Counterfeit of medicines causes 37,000 job losses in EU Pharma Industry

Image result for Counterfeit medicine

Counterfeit medicine is an increasing problem for public health and economy. This is no longer a problem of certain regions such as Asia and Africa. It has now also become an issue in the EU and US. The European Union Intellectual Property Office (EUIPO) published a press release on 29 September 2016 in which they state that fake medicines cost the EU pharmaceutical sector 10.2 billion Euro every year. Read more about the latest figures on counterfeit medicines

http://www.gmp-compliance.org/enews_05605_Counterfeit-of-medicines-causes-37-000-job-losses-in-EU-Pharma-Industry_15356,S-QSB_n.html

str1 str2

Counterfeit medicine is an increasing problem for public health and economy. This is no longer a problem of certain regions such as Asia and Africa. It has now also become an issue in the EU and the US. In the past, counterfeit medicines could not enter the legal supply chain in the EU and US. But the problem has now also been arising in western countries. A number ofcases of counterfeit medicines were detected recently. In order to cope with this increasing problem, the EU has introduced a regulation which requires that as of 9th February 2019 certain medicinal products can only enter the EU market if a 2D barcode is used as a safety feature. This code must be applied on the packaging in readable form.

The European Union Intellectual Property Office (EUIPO) published a press release on 29 September 2016 in which they state that fake medicines cost the EU pharmaceutical sector 10.2 billion Euro every year. The counterfeit products cause a loss of 4.4% of the legitimate sales of pharmaceuticals. This means “37,700 jobs directly lost across the pharmaceutical sector in the EU” according to the report. Only for Germany, an annual loss of 1 billion Euro has been calculated which caused a direct job loss of 6,951. Regarding other countries, the figures are: Italy 1.59 billion, France 1 billion, Spain 1,17 billion and UK 605 million loss annually.

Source: Press Release EUIPO, September 29, 2016

//////////Counterfeit of medicines, 37,000 job losses,  EU Pharma Industry

The impact of the FDA Combination Products Guidance on Nasal and Oral Inhalation Drug Products

Image result for Oral Inhalation and Nasal Drug Products

The FDA draft guidance for combination products has a substantial impact on the development of Oral Inhalation and Nasal Drug Products (OINDPs) as it requires that the manufacturers have to be compliant not only with CGMPs for the drugs (21 CFR Parts 210 and 211) but also with the quality system (QS) regulations for devices (21 CFR Part 820). Find out more about the FDA Draft Guidance for Combination Products.

http://www.gmp-compliance.org/enews_05639_The-impact-of-the-FDA-Combination-Products-Guidance-on-Nasal-and-Oral-Inhalation-Drug-Products_15462,Z-QCM_n.html

Based on the CGMP requirements for single-entity and co-packaged combination products (21 CFR Part 4) the manufacturers of Oral Inhalation and Nasal Drug Products (OINDPs) have to be compliant with CGMPs for the drug constituent part(s) (21 CFR Parts 210 and 211) and the quality system (QS) regulations for device constituent part(s) (21 CFR Part 820).

This can be achieved either by a drug CGMP-based streamlined approach (21 CFR 4.4(a)) or a QS regulation-based streamlined approach (21 CFR 4.4(b)).  Following the first approach the combination product manufacturers have to be compliant with the drug CGMP and device QS regulation requirements:

– 21 CFR 820.20 – Management responsibility
– 21 CFR 820.30 – Design controls
– 21 CFR 820.50 – Purchasing controls
– 21 CFR 820.100 – Corrective and preventive actions
– 21 CFR 820.170 – Installation
– 21 CFR 820.200 – Servicing

The OINDP manufacturers have to be clearly stated in their submission and at the initiation of a pre-approval inspection (PAI) whether they are operating under the drug CGMP or QS regulation-based approach.

Here you can see the complete FDA Draft Guidance on Combination Products including the requirements for Oral Inhalation and Nasal Drug Products.
////// FDA Combination Products Guidance, Nasal and Oral Inhalation,  Drug Products

FDA presentation at the ECA Conference Particles in Parenterals

Image result for visual inspection of medicinal products for parenteral use.

At the Particles in Parenterals Conference Dr Stephen Langille from the US FDA gave a talk on the FDA’s current thinking with regard to the visual inspection of medicinal products for parenteral use.

http://www.gmp-compliance.org/enews_05610_FDA-presentation-at-the-ECA-Conference-Particles-in-Parenterals_S-PTK_n.html

Dr Stephen Langille from the US FDA gave a talk on the FDA’s current thinking with regard to the visual inspection of medicinal products for parenteral use. In his presentation he showed the number of recalls caused by visible particulate matter over the last 11 years. For him, most of the recalls were justified when the types of particles found were taken into consideration. He also emphasized that something is possibly wrong in the visual inspection process if particles found in the market are bigger than 1000 µm.

The prevention of particles is very important to him. From his perspective the best particle is one which is not in the product. Also important to him are threshold studies, meaning to show the minimum particle size which can still be detected (dependent of product and type of container). These threshold studies are crucial for the setup of the test sets and the qualification of the inspectors of the manual inspection. He also mentioned the semi-automated inspection process. For him semi-automated inspection is good for detecting container-closure issues, like missing stoppers. But he also questioned whether an inspection time of about one second is suitable to detect particles with a size of 200µm for example. In the discussion he was asked about FDA’s opinion on the USP chapter <790>. In his opinion, USP chapter <790> can be an effective tool for ensuring that the manufacturing process and 100% inspection process are adequate to limit visible particle contamination. However, cGMPs must be followed during the manufacturing and visual inspection process. Meeting the requirements of USP <790> should not be used to excuse not meeting cGMPs.

You will find the complete presentation in the members area of the ECA webpage.

.///////////FDA presentation, ECA Conference , Particles in Parenterals

Critical Impurities in Pharmaceutical Water

Image result for Pharmaceutical Water

The quality of the source water used to produce pharmaceutical water plays an important role for both the design of the treatment and the validation of the water system. FDA Warning Letters over the past few years have shown that compliance with the specification of pharmaceutical water is not enough. A validation of the treatment process is expected. This includes documentation of the process capacity to produce pharmaceutical water according to specification. If we do not know the quality of the source water, however, the purification capacity is not known either. As a consequence, fluctuations of the quality of the source (feed) water quality may lead to water that does not comply with the specification after purification. Or it is not known up to which quality level of the source water pharmaceutical water that complies with the specification can be produced. Therefore, it is important to know the impurities respectively their concentration in the source (feed) water.
The production of pharmaceutical water is always based on drinking water. The specifications for drinking water however (for Germany, stipulated in the Trinkwasserverordnung; for the U.S., in the National Primary Drinking Water Regulation) are defined very broadly compared to Pharmacopoeial specifications.

The quality of the drinking water varies widely as well, as drinking water may come from different sources (ground water or surface water). Even the ground water quality varies locally, e. g., depending on the season. This is why water purification plants for the pharmaceutical industry are not ready-made goods, but individual solutions that have to be developed by the future user and the plant supplier together. The plant supplier will always ask about the quality of the drinking water so that he can offer the appropriate processing technologies.

In particular, he will need the following information. For this purpose, it is useful to provide the plant engineer with various drinking water analyses over a minimum period of twelve months.

For the design of a pharmaceutical water plant, the indicator parameters according to the Trinkwasserverordnung (conductivity, iron, manganese, sulphate and pH value) are important, as the amount of the ionic load determines the treatment process. For instance, a single-stage or double-stage reverse osmosis may be sufficient to obtain adequate quality at low conductivity levels. Iron and manganese are limited by the drinking water ordinance, but will lead to irreversible membrane damage at the reverse osmosis plant when their limits (according to the Trinkwasserverordnung) are exceeded.

Image result for Pharmaceutical Water

Furthermore, information on the total hardness is indispensable, as it has a major influence on the design of the softening plant – as well as on carbonate hardness or base capacity which are used to calculate the amount of dissolved carbon dioxide. This parameter restricts the use of EDI or may require further treatment, such as membrane degassing.

Depending on the origin of the drinking water, a responsible plant engineer should measure the colloid index (SDI 15) before designing the plant. Especially with surface water, higher amounts are to be expected. A colloid index of more than 5%/min can already have a negative impact on the operation of a reverse osmosis plant (membrane blocking and/or fouling) and may require additional treatment techniques, such as ultrafiltration before the main plant. While the colloid index is never determined via the water supplier, the silicate content is often indicated in the drinking water analysis. A silicate content of more than 25 ppm can become critical for a combination of reverse osmosis and EDI and should also be determined in case it is not indicated in the analysis.

All microbiological parameters have been regulated in the Trinkwasserverordnung. However, you should always remember that the supplier guarantees the quality only up to the point of transfer. With regards to the total bacteria count in particular, regular tests are necessary in order to identify seasonal fluctuations.

http://www.gmp-compliance.org/enews_5532_Critical-Impurities-in-Pharmaceutical-Water_n.html

Image result for Pharmaceutical Water

Image result for Pharmaceutical Water

////////////Critical Impurities, Pharmaceutical Water