New ICH Guidelines: ICH Q13 on Conti Manufacturing and ICH Q14 on AQbD

ICH

New ICH Guidelines:

*ICH Q13* on Continuous Manufacturing &
🎛🎚

*ICH Q14* on ATP – QbD (Analytical target profile and quality by design)

New ICH Guidelines: ICH Q13 on Conti Manufacturing and ICH Q14 on AQbD

In a press release from 22 June the International Council for Harmonisation (ICH) has announced that they will prepare new topics for the future. The Assembly agreed to begin working on two new topics for ICH harmonisation:

Analytical Procedure Development and Revision of Q2(R1) Analytical Validation (Q2(R2)/Q14)
and
Continuous Manufacturing (Q13)

The long anticipated revision of ICH Q2(R1) “Guideline on Validation of Analytical Procedures: Text and Methodology” has been approved and the work plan is scheduled to commence in Q3 2018. It is intended that the new guidelines will be consistent with ICH Q8(R2), Q9, Q10, Q11 and Q12 .

The AQbD approach is very important to collect information in order to get an understanding and control of sources of variability of the analytical procedure by defining the control strategy.

Based on the Analytical Target Profile (ATP) the objective of the test and the quality parameters can be defined. By performing the validation (qualification) in the QbD concept, sufficient confidence can be achieved in order to consistently generate the analytical results that meet the ATP requirements.

So far there has been a lack of an Analytical Development Guideline, which the new ICH Development Guideline is supposed to compensate. Currently analytical procedures are mainly validated according to the classical validation parameters and these procedures mainly focus on HPLC Methods. Therefore this ICH topic has a top priority for the pharmaceutical industry. It is expected that the Revision of the Q2 (R1) Guideline will help to implement new and innovative analytical methods.

For more details please read the complete ICH Press Release (Kobe, Japan, June 2018).

http://www.ich.org/ichnews/press-releases/view/article/ich-assembly-kobe-japan-june-2018.html

Advertisement

FDA approves first drug Epidiolex (cannabidiol) comprised of an active ingredient derived from marijuana to treat rare, severe forms of epilepsy

New Drug Approvals

The U.S. Food and Drug Administration today approved Epidiolex (cannabidiol) [CBD] oral solution for the treatment of seizures associated with two rare and severe forms of epilepsy, Lennox-Gastaut syndrome and Dravet syndrome, in patients two years of age and older. This is the first FDA-approved drug that contains a purified drug substance derived from marijuana. It is also the first FDA approval of a drug for the treatment of patients with Dravet syndrome.

June 25, 2018

Release

The U.S. Food and Drug Administration today approved Epidiolex (cannabidiol) [CBD] oral solution for the treatment of seizures associated with two rare and severe forms of epilepsy, Lennox-Gastaut syndrome and Dravet syndrome, in patients two years of age and older. This is the first FDA-approved drug that contains a purified drug substance derived from marijuana…

View original post 804 more words

FDA takes steps to foster greater efficiency in biosimilar development by reconsidering draft guidance on evaluating analytical studies

Image result for draft guidance

 

FDA takes steps to foster greater efficiency in biosimilar development by reconsidering draft guidance on evaluating analytical studies

Today, the agency withdrew the draft guidance, “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and a reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved.

June 21, 2018

Media Inquiries

  Angela Stark
  301-796-0397

“Biosimilars foster competition and can lower the cost of biologic treatments for patients, yet the market for these products is not advancing as quickly as I hoped. I believe that the FDA can do more to support the development of biosimilars, as well as promote the market acceptance of these products. As the cost to develop a single biosimilar product can reach hundreds of millions of dollars, it’s important that we advance policies that help make the development of biosimilar products more efficient, and patient and provider acceptance more certain,” said FDA Commissioner Scott Gottlieb, M.D. “One of the central aspects of biosimilar development and approval is the analytical studies performed to demonstrate that a biosimilar is highly similar to the reference product. We’re taking a fresh look at our draft recommendations for evaluating analytical studies in order to ensure our guidance takes into consideration the most current and relevant science. We’ll continue to work directly with biosimilar developers on their programs as we develop new draft guidance in this area. By supporting the more efficient development of biosimilars over the long term and helping reduce barriers to bringing these products to market, we can help ensure patients get access to affordable, safe and effective treatment options.”

Today, the agency withdrew the draft guidance, “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and a reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved.

Comments submitted to the docket addressed a range of issues that could impact the cost and efficiency of biosimilar development, including the number of reference product lots the draft guidance would recommend biosimilar developers sample in their evaluation of high similarity and the statistical methods for this evaluation. The FDA believes that in better addressing these issues in the future, the agency can advance principles that can promote a more efficient pathway for the development of biosimilar products.

The agency intends to issue future draft guidance that will reflect state-of-the-art techniques in the evaluation of analytical data to support a demonstration that a proposed biosimilar product is highly similar to a reference product. The goal is for future draft guidance to address potential challenges faced by biosimilar sponsors in designing studies that are intended to demonstrate that a proposed biosimilar product is highly similar to a reference product, including consideration of appropriate methods to analyze analytical data to account for potential lot-to-lot variability of the reference product. Future draft guidance also will focus on providing appropriate flexibility for sponsors in order to help spur the efficient development of biosimilars without compromising the agency’s rigorous scientific standards for evaluating marketing applications for biosimilars.

The FDA continues to encourage sponsors of proposed biosimilar products to discuss product development plans with the agency, including the evaluation of analytical data intended to support a demonstration that the proposed biosimilar product is highly similar to a reference product. The FDA will continue to provide development-stage advice to sponsors of proposed biosimilar products or proposed interchangeable products through formal meetings and other interactions with sponsors.

The FDA will communicate publicly when new draft guidance is issued in relation to the evaluation of analytical data between a proposed biosimilar product and a reference product.

/////////////////biosimilar development, draft guidance, analytical studies

FDA and USDA announce key step to advance collaborative efforts to streamline produce safety requirements for farmers

Image result for FDA and USDA announce key step to advance collaborative efforts to streamline produce safety requirements for farmers
As part of the U.S. Food and Drug Administration and the U.S. Department of Agriculture’s ongoing effort to make the oversight of food safety stronger and more efficient, the FDA and the USDA today announced the alignment of the USDA Harmonized Good Agricultural Practices Audit Program (USDA H-GAP) with the requirements of the FDA Food Safety Modernization Act’s (FSMA’s) Produce Safety Rule.
The new step is part of an ongoing effort to streamline produce safety requirements for farmers. The joint announcement was made by Agriculture Secretary Sonny Perdue and FDA Commissioner Scott Gottlieb, M.D., during a visit by the Secretary to the FDA’s White Oak campus in Silver Spring, Md.

june 5, 2018

Image result for FDA and USDA announce key step to advance collaborative efforts to streamline produce safety requirements for farmers

 

Release

As part of the U.S. Food and Drug Administration and the U.S. Department of Agriculture’s ongoing effort to make the oversight of food safety stronger and more efficient, the FDA and the USDA today announced the alignment of the USDA Harmonized Good Agricultural Practices Audit Program (USDA H-GAP) with the requirements of the FDA Food Safety Modernization Act’s (FSMA’s) Produce Safety Rule.

The new step is part of an ongoing effort to streamline produce safety requirements for farmers. The joint announcement was made by Agriculture Secretary Sonny Perdue and FDA Commissioner Scott Gottlieb, M.D., during a visit by the Secretary to the FDA’s White Oak campus in Silver Spring, Md.

“Government should make things easier for our customers whenever possible and these important improvements help accomplish that goal,” said Secretary Perdue. “Specialty crop farmers who take advantage of a USDA Harmonized GAP audit now will have a much greater likelihood of passing a FSMA inspection as well. This means one stop at USDA helps producers meet federal regulatory requirements, deliver the safest food in the world and grow the market for American-grown food. This is an important first step. We look forward to continuing to work with FDA, other government agencies and especially our state partners to ensure proper training of auditors and inspectors, and to help producers understand changes in the audit.”

While the requirements of both programs are not identical, the relevant technical components in the FDA Produce Safety Rule are covered in the USDA H-GAP Audit Program. The aligned components include areas such as biological soil amendments; sprouts; domesticated and wild animals; worker training; health and hygiene; and equipment, tools and buildings. The alignment will help farmers by enabling them to assess their food safety practices as they prepare to comply with the Produce Safety Rule. However, the USDA audits are not a substitute for FDA or state regulatory inspections.

“We’re committed to working with USDA to pursue our shared goal of advancing food safety in a way that is efficient and helps farmers meet our regulatory standards. By working together, our two programs can advance these efforts more effectively,” said Commissioner Gottlieb. “Today’s announcement will help FDA and states better prioritize our inspectional activities by using USDA H-GAP audit information to prioritize inspectional resources and ultimately enhance our overall ability to protect public health. Inspections are key to helping to ensure that produce safety standards are being met, but they only provide a snapshot in time. Leveraging the data and work being done by USDA will provide us with more information so that we can develop a clearer understanding of the safety and vulnerabilities on produce farms as well as concentrate our oversight and resources where they are most needed.”

The Produce Safety Rule, which went into effect on Jan. 26, 2016, establishes science-based minimum standards for the safe growing, harvesting, packing and holding of fruits and vegetables grown for human consumption. The rule is part of the FDA’s ongoing efforts to implement FSMA. Large farming operations were required to comply with the rule in January 2018. However, the FDA had previously announced that inspections to assess compliance with the Produce Safety Rule for produce other than sprouts would not begin until Spring 2019. Small and very small farms have additional time to comply.

The USDA Harmonized GAP Audit Program is an audit developed as part of the Produce GAP Harmonization Initiative, an industry-driven effort to develop food safety GAP standards and audit checklists for pre-harvest and post-harvest operations. The Initiative is a collaborative effort on the part of growers, shippers, produce buyers, audit organizations and government agencies, including USDA. The USDA Harmonized GAP audit, in keeping with the Initiative’s goals, is applicable to all fresh produce commodities, all sizes of on-farm operations and all regions in the United States. For more information visit: https://www.ams.usda.gov.

Today’s announcement builds on a formal agreement signed earlier this year outlining plans to increase interagency coordination regarding produce safety, inspections of dual-jurisdiction facilities and biotechnology activities. The FDA and USDA are committed to continuing to work collaboratively to ensure that the requirements and expectations of the USDA H-GAP Audit Program remain aligned with the FDA’s Produce Safety Rule.

Farmers who are interested in learning more about this alignment and what they can do to prepare for compliance with the Produce Safety Rule can contact their regional representative of the Produce Safety Network or find more information at FDA.gov.

The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nation’s food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products.

The U.S. Department of Agriculture (USDA) is made up of 29 agencies and offices with nearly 100,000 employees who serve the American people at more than 4,500 locations across the country and abroad. We provide leadership on food, agriculture, natural resources, rural development, nutrition, and related issues based on public policy, the best available science, and effective management. We have a vision to provide economic opportunity through innovation, helping rural America to thrive; to promote agriculture production that better nourishes Americans while also helping feed others throughout the world; and to preserve our nation’s natural resources through conservation, restored forests, improved watersheds, and healthy private working lands.

Cafestol

New Drug Approvals

Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice https://lnkd.in/e7BxMkg

Image result for CafesterolChemSpider 2D Image | Cafesterol | C20H28O3Image result for Cafesterol

Cafesterol

  • Molecular FormulaC20H28O3
  • Average mass316.435 Da
  • (1S,4S,12S,13R,16S,17R)-17-(Hydroxymethyl)-12-methyl-8-oxapentacyclo[14.2.1.01,13.04,12.05,9]nonadeca-5(9),6-dien-17-ol
    (1S,4S,12S,13R,16S,17R)-17-(Hydroxymethyl)-12-methyl-8-oxapentacyclo[14.2.1.01,13.04,12.05,9]nonadeca-5(9),6-dien-17-ol
    (1S,4S,12S,13R,16S,17R)-17-(Hydroxyméthyl)-12-méthyl-8-oxapentacyclo[14.2.1.01,13.04,12.05,9]nonadéca-5(9),6-dién-17-ol
    (3bS,5aS,7R,10aR,10bS)-7-(hydroxymethyl)-10b-methyl-3b,4,5,6,7,8,9,10,10a,10b,11,12-dodecahydro-5a,8-methanocyclohepta[5,6]naphtho[2,1-b]furan-7-ol
    [3bS-(3ba,5ab,7b,8b-10aa,10bb)]-3b,4,5,6,7,8,9,10,10a,10b,11,12-Dodecahydro-7-hydroxy-10b-methyl-5a,8-methano-5aH-cyclohepta[5,6]-naphtho[2,1-b]furan-7-methanol
    Cafesterol
    469-83-0 [RN]

Scientists identify health benefits of cafestol in coffee

Scientists have identified two compounds in coffee – cafestol and caffeic acid – that could someday lead to the development of new medications to better prevent and treat type 2 diabetes…

Drinking three to four cups of coffee per day has been shown to decrease the risk of developing type 2 diabetes.

Now, scientists report they have identified two compounds that contribute to this health benefit. Researchers say that this knowledge could someday help them develop new medications to better prevent and treat the disease.

Patients with type 2…

View original post 574 more words

Eating Nuts may dramatically improve Colon Cancer outcomes — ClinicalNews

New Drug Approvals

Eating Nuts may dramatically improve Colon Cancer outcomes Those who regularly consumed at least two, one-ounce servings of nuts each week demonstrated a 42% improvement in disease-free survival and a 57% improvement in overall survival. Nut Consumption and Survival in Patients With Stage III Colon Cancer: Results From CALGB 89803 (Alliance). Journal of Clinical […]

via Eating Nuts may dramatically improve Colon Cancer outcomes — ClinicalNews

View original post

Pralatrexate プララトレキサート

New Drug Approvals

10-Propargyl-10-deazaaminopterin.pngPralatrexate.pngChemSpider 2D Image | Pralatrexate | C23H23N7O5

Pralatrexate (JAN/USAN/INN);
10-Propargyl-10-deazaaminopterin;
Folotyn (TN)

Antineoplastic

Product
CAS:
FOLOTYN (Allos Therapeutics)
146464-95-1
Formula
C23H23N7O5
Exact mass
477.1761

Image result for Difolta

  • (2S)-2-((4-((1RS)-1-((2,4-diaminopteridin-6-yl)methyl)but-3-ynyl)benzoyl)amino)pentanedioic acid
  • (2S)-2-({4-[1-(2,4-diaminopteridin-6-yl)pent-4-yn-2-yl]benzoyl}amino)pentanedioic acid
  • 10-Propargyl-10-deazaaminopterin
  • N-(4-(1-((2,4-Diamino-6-pteridinyl)methyl)-3-butynyl)benzoyl)-L-glutamic acid
  • PDX
  • UNII:A8Q8I19Q20

Japan approved 2017

2017/7/3PMDAJAPANPralatrexateDifoltaMundipharmaNME

Image result for DifoltaImage result for Difolta

EMA 2012

http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002096/WC500129886.pdf

The molecule contains two asymmetric carbon centres (C10) and (C19). The C10 position exists in the RS-configuration (approx. 50:50 ratio) on the link between the two aryl groups. The C19 position is contained in the glutamic acid moiety and predominantly exists in the S-configuration. Pralatrexate is an off-white to yellow crystalline material, soluble in aqueous solutions at pH 6.5 or higher and practically insoluble in chloroform, and ethanol. It predominantly exists as a single polymorph (form A).

Pralatrexate, chemically known as “(2S)-2-[[4-[(1RS)-1-[(2,4-diaminopteridin-6-yl)methyl]but-3-ynyl]benzoyl- ]-amino]pentanedioic acid”, also known as “10-Propargyl-10-deazaminopterin” or “PDX”, is a compound which has been tested and found useful in the treatment of cancer. In its racemic form, 2S)-2-[[4-[(1RS)-1-[(2,4-diaminopteridin-6-yl)methyl]but-3-ynyl]benzoyl]a- mino]-pentanedioic…

View original post 7,151 more words

Nusinersen sodium, ヌシネルセンナトリウム

New Drug Approvals

ヌシネルセンナトリウム
Nusinersen Sodium

C234H323N61Na17O128P17S17 : 7500.89
[1258984-36-9 , ヌシネルセン]

Nusinersen sodium

C234H323N61O128P17S17.17Na, 7500.8854

UNII 4CHB7QQU1Q

ISIS 396443

Nusinersen sodium was approved by the US Food and Drug Administration (FDA) on Dec 23, 2016, and approved by the European Medicines Agency’s (EMA) on May 30, 2017, and approved by Pharmaceuticals and Medical Devices Agency of Japan (PMDA) on July 3, 2017.

JAPAN APPROVAL

2017/7/3Nusinersen sodiumSpinrazaBiogen Japan

An antisense oligonucleotide that induces survival motor neuron (SMN) protein expression, it was approved by the U.S. FDA in December, 2016 as Spinraza for the treatment of children and adults with spinal muscular atrophy (SMA). It is adminstrated as direct intrathecal injection.Nusinersen sodium colored.svgFREE FORM CAS: 1258984-36-9

Image result for nusinersen

CAS1258984-36-9

MFC234H340N61O128P17S17

ISIS-396443, ISIS-SMNRx, IONIS-SMNRx

RNA, (2′-0-(2-methoxyethyi))(p-thio)(m5u-c-a-c-m5u-m5u-m5u-c-a-m5ua- a-m5 u-g-c-m5u-g-g)

RNA, (2′-0-(2-METHOXYETHYI))(P-THIO)(M5U-C-A-C-M5U-M5U-M5U-C-A-M5UA- A-M5 U-G-C-M5U-G-G)

All-P-ambo-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioadenylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioguanylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiocytidylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-5-methyl-P-thiouridylyl-(3’¨5′)-2′-O-(2-methoxyethyl)-P-thioguanylyl-(3’¨5′)-2′-O-(2-methoxyethyl)guanosine

ISIS-SMNRx is a drug that…

View original post 2,575 more words