New ICH Guidelines: ICH Q13 on Conti Manufacturing and ICH Q14 on AQbD

ICH

New ICH Guidelines:

*ICH Q13* on Continuous Manufacturing &
🎛🎚

*ICH Q14* on ATP – QbD (Analytical target profile and quality by design)

New ICH Guidelines: ICH Q13 on Conti Manufacturing and ICH Q14 on AQbD

In a press release from 22 June the International Council for Harmonisation (ICH) has announced that they will prepare new topics for the future. The Assembly agreed to begin working on two new topics for ICH harmonisation:

Analytical Procedure Development and Revision of Q2(R1) Analytical Validation (Q2(R2)/Q14)
and
Continuous Manufacturing (Q13)

The long anticipated revision of ICH Q2(R1) “Guideline on Validation of Analytical Procedures: Text and Methodology” has been approved and the work plan is scheduled to commence in Q3 2018. It is intended that the new guidelines will be consistent with ICH Q8(R2), Q9, Q10, Q11 and Q12 .

The AQbD approach is very important to collect information in order to get an understanding and control of sources of variability of the analytical procedure by defining the control strategy.

Based on the Analytical Target Profile (ATP) the objective of the test and the quality parameters can be defined. By performing the validation (qualification) in the QbD concept, sufficient confidence can be achieved in order to consistently generate the analytical results that meet the ATP requirements.

So far there has been a lack of an Analytical Development Guideline, which the new ICH Development Guideline is supposed to compensate. Currently analytical procedures are mainly validated according to the classical validation parameters and these procedures mainly focus on HPLC Methods. Therefore this ICH topic has a top priority for the pharmaceutical industry. It is expected that the Revision of the Q2 (R1) Guideline will help to implement new and innovative analytical methods.

For more details please read the complete ICH Press Release (Kobe, Japan, June 2018).

http://www.ich.org/ichnews/press-releases/view/article/ich-assembly-kobe-japan-june-2018.html

Advertisements

FDA takes steps to foster greater efficiency in biosimilar development by reconsidering draft guidance on evaluating analytical studies

Image result for draft guidance

 

FDA takes steps to foster greater efficiency in biosimilar development by reconsidering draft guidance on evaluating analytical studies

Today, the agency withdrew the draft guidance, “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and a reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved.

June 21, 2018

Media Inquiries

  Angela Stark
  301-796-0397

“Biosimilars foster competition and can lower the cost of biologic treatments for patients, yet the market for these products is not advancing as quickly as I hoped. I believe that the FDA can do more to support the development of biosimilars, as well as promote the market acceptance of these products. As the cost to develop a single biosimilar product can reach hundreds of millions of dollars, it’s important that we advance policies that help make the development of biosimilar products more efficient, and patient and provider acceptance more certain,” said FDA Commissioner Scott Gottlieb, M.D. “One of the central aspects of biosimilar development and approval is the analytical studies performed to demonstrate that a biosimilar is highly similar to the reference product. We’re taking a fresh look at our draft recommendations for evaluating analytical studies in order to ensure our guidance takes into consideration the most current and relevant science. We’ll continue to work directly with biosimilar developers on their programs as we develop new draft guidance in this area. By supporting the more efficient development of biosimilars over the long term and helping reduce barriers to bringing these products to market, we can help ensure patients get access to affordable, safe and effective treatment options.”

Today, the agency withdrew the draft guidance, “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and a reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved.

Comments submitted to the docket addressed a range of issues that could impact the cost and efficiency of biosimilar development, including the number of reference product lots the draft guidance would recommend biosimilar developers sample in their evaluation of high similarity and the statistical methods for this evaluation. The FDA believes that in better addressing these issues in the future, the agency can advance principles that can promote a more efficient pathway for the development of biosimilar products.

The agency intends to issue future draft guidance that will reflect state-of-the-art techniques in the evaluation of analytical data to support a demonstration that a proposed biosimilar product is highly similar to a reference product. The goal is for future draft guidance to address potential challenges faced by biosimilar sponsors in designing studies that are intended to demonstrate that a proposed biosimilar product is highly similar to a reference product, including consideration of appropriate methods to analyze analytical data to account for potential lot-to-lot variability of the reference product. Future draft guidance also will focus on providing appropriate flexibility for sponsors in order to help spur the efficient development of biosimilars without compromising the agency’s rigorous scientific standards for evaluating marketing applications for biosimilars.

The FDA continues to encourage sponsors of proposed biosimilar products to discuss product development plans with the agency, including the evaluation of analytical data intended to support a demonstration that the proposed biosimilar product is highly similar to a reference product. The FDA will continue to provide development-stage advice to sponsors of proposed biosimilar products or proposed interchangeable products through formal meetings and other interactions with sponsors.

The FDA will communicate publicly when new draft guidance is issued in relation to the evaluation of analytical data between a proposed biosimilar product and a reference product.

/////////////////biosimilar development, draft guidance, analytical studies

WHO Draft on Analytical Method Validation

The World Health Organization (WHO) recently published a draft document on analytical method Validation for comment. Read more about the draft “Guidelines on Validation – Appendix 4 Analytical Method Validation“.

http://www.gmp-compliance.org/enews_05452_WHO-Draft-on-Analytical-Method-Validation_15729,15438,Z-PDM_n.html

In June 2016 the World Health Organization (WHO) published a draft document “Guidelines on Validation – Appendix 4 Analytical Method Validation”. Comments on the text should be sent to WHO until July 30, 2016.

The appendix 4 of the published Supplementary guidelines on good manufacturing practices: validation (WHO Technical Report Series, No. 937, 2006, Annex 4) has been revised in view of current trends in validation. The appendix presents some information on the characteristics that should be considered during validation of analytical methods. Approaches other than those specified in the Appendix may be followed and may be acceptable.

The new Appendix 4 is structured as follows (New and revised):

1. Principle (revised):

  • 1.5 The recommendations as provided for in good laboratory practices and guidelines for transfer of technology (WHO Technical Report Series, No. 961, 2011, Annex 7) should be considered, where applicable, when analytical method validation is organized and planned.

2. General (revised):

  • 2.6 The procedure should become part of a continuous verification procedure to demonstrate that it meets the predefined criteria over the life of the procedure.
  • 2.7 Trend analysis and risk assessments should be considered at intervals to ensure that the method is appropriate for its intended application.
  • 2.8 Changes to methods should be managed in accordance with the authorized change control procedure.
  • 2.9 The scope of verification or degree of revalidation depend on the nature of the change(s) and the outcome of risk assessment.
  • 2.11 The data obtained during method validation and verification should be considered covered by good anything practices (GxP) requirements and are expected to follow the principles of good data and record management practices. Their associated metadata are also expected to be retained and subjected to good data and record management practices (WHO Technical Report Series, No. 996, 2016, Annex 5).
  • 2.12 When computerized systems are used to obtain and process data relating to method validation and verification, they should comply to the principles enunciated in Appendix 5 – Validation of computerized systems.
  • 2.13 Adequate attention should be paid to the method of sample preparation.
  • (…)

3. Pharmacopoeial methods
4. Non-pharmacopoeial methods
5. Method validation
6. Method verification (New):

  • 6.1 Method verification should be performed for already validated analytical methods, for example, when it is used on a product for the first time (e.g. in case of a change in API supplier, change in method of synthesis or after reformulation of a drug product).
  • 6.2 Method verification may include only the validation characteristics of relevance to the particular change.
  • (…)

7. Method revalidation (New):

  • 7.1 Methods should be maintained in a validated state over the life of the method. Revalidation (see also ICH Q2) should be considered whenever there are changes made to the analytical method (e.g. changes to mobile phase, column, column temperature, detector).
  • 7.2 In case of repeated SST failures or when obtaining of doubtful results. In such cases an investigation of the root cause should be performed, the appropriate changes made and the method revalidated.
  • 7.3 Periodic revalidation of analytical methods should be considered according to a period that is scientifically justifiable.
  • (…)

8. Method transfer  (New)

  • 8.1 During method transfer, documented evidence should be established to prove that a method has equivalent performance when used in a laboratory different from that where it has been originally validated.
  • (…)
  • 8.3 The two sets of results should be statistically compared and the differences between the two sets of test results should be within an acceptable range.
  • 8.4 Method transfer should be performed before testing of samples for obtaining critical data for a dossier, such as process validation or stability studies or applied for routine use.
  • (…)

9. Characteristics of analytical procedures (revised), 9.3 System suitability testing:

  • 9.3.1 The suitability of the entire system should be confirmed prior to and during method validation tests as well as during the test of samples.
  • 9.3.2 System suitability runs should include only established standards or reference materials of known concentration to provide an appropriate comparator for the potential variability of the instrument.
  • 9.3.3 Where a sample is used for system suitability or a trial run, written procedures should be established and followed and the results of all such trial runs be included in the results and data review process. A sample can be used only if it is a well characterized material. Characterization in such a case should be performed prior to the use of this sample as part of system suitability testing. The sample material or product under test should not be used for trial run purposes or to evaluate suitability of the system (see WHO guidelines on good data and record management practices).

The revised version of appendix 4 parallels certain considerations of the current USP lifecycle approach for analytical method validation. However, QbD concepts and the Analytical Target Profile (ATP) – which is equivalent to the Quality Target Product Profile (QTPP) – have not yet been introduced in the WHO draft.

According to WHO the draft of Appendix 4 will also be placed on the WHO Medicines website under “Current projects“.

Members of the ECA Academy are able to access the new WHO Guidelines on Validation – Appendix 4 Analytical Method Validation in the ECA Members Area.

 

////////WHO Draft, Analytical Method Validation

USP Chapter Visual Inspection of Injections published

The long-awaited USP Chapter <1790> regarding the 100% visual control of injections has been issued in the Pharmacopeial Forum 41(1) for commenting. Read on.

http://www.gmp-compliance.org/enews_4682_USP-Chapter–1790–Visual-Inspection-of-Injections-published_40007,9087,9200,Z-PEM_n.html

The long-awaited USP Chapter <1790> regarding the 100% visual control of injectables has now been issued as a first draft in the Pharmacopeial Forum 41(1) for commenting.

The new chapter is comprised of the following sub-chapters:
1. Scope
2. Introduction
3. Typical Inspection Process Flow
4. Inspection Life-Cycle
5. Interpretation of Results
6. Inspection Methods and Technologies
7. Qualification and Validation of Inspection Processes
8. Conclusions and Recommendations
9. References

This new informative chapter is applied to the manual, the half-automatic and the fully-automated inspection of parenterals. It mainly aims at controlling particles (>50 µm), but also comprises indications to further defects like cracks in primary containers or poorly fitting stoppers. In Chapter 2 there are also general statements regarding the patient risk due to particulate matter with regards to the size and type of the particulate impurity and the patient’s condition or age. It is interesting that this is expanded in Chapter 4 where possible particle sources (stopper, glass, silicon etc.) are mentioned together with the request to prevent any generation of particles. The Sub-chapter 4.2.1 aims at avoiding of intrinsic particles already in product development – e.g. through the prevention of glass delamination, by choosing appropriate formulations and according stability studies. Supplementary, Chapter 4.3 is dedicated the removal of particles, e.g. by washing primary containers and the associated particle depletion studies.

As already described in the USP Chapter <790> the AQL testing is supposed to be part of the evaluation of a batch. For that purpose samples are drawn from the good proportion of the tested batch according to defined sampling plans. These samples are then tested again to evaluate the quality of the preceeding 100% control. The AQL limits named exemplarily in Chapter <17990> are more strict, though, as those in the ECA Best Practice Paper for the visual control.

Some practical tips are contained in Chapter 5. For instance, it is suggested there to enhance the illumination to 10.000 Lux and to possibly screen the containers from the back when testing brown glass or plastic containers as a visual control for these containers is difficult to conduct.

Chapter 7 (Qualification/Validation of inspection processes) is mainly directed towards the manual visual inspection. It comprises tips for the creation of test sets and the qualification as well as the re-qualification of personnel. The application of Knapp tests for determining the detection rates is also mentioned there. However, there are only very few tips for the fully-automated inspection, and there are no details referring to the qualification or re-qualification of fully-automated inspection processes.

The draft of the new Chapter <1790> is available online on the USP website. You will only need to register, which is free of charge, though. The deadline for comments is the 31 March 2015.

EU Commission issues new EU GMP Guide Chapter 6

EU Commission issues new EU GMP Guide Chapter 6
In early April 2014, the EU Commission has published a new Chapter 6 Quality Control. The new chapter will become effective on 1 October 2014. Read more in the GMP news to the new EU GMP chapter quality control.

http://www.gmp-compliance.org/enews_4262_EU%20Commission%20issues%20new%20EU%20GMP%20Guide%20

Chapter%206_8267,8301,8399,8430,Z-QCM_n.html

 

EU Commission issues new EU GMP Guide Chapter 6

In early April 2014, the EU Commission has published a new chapter 6 Quality Control. The new chapter will become effective on 1 October 2014. The main reasons for the changes (as e.g. the insertion of a new chapter on transfer of analytical methods) were already subject of our news Revision of the EU GMP Guide: EU Commission Proposal for Chapter 6 – Quality Control).

The now published document comprises different additions. For instance, the following was added in 6.5. Good Quality Control Laboratory Practices: “laboratory equipment should not be routinely moved between high risk areas to avoid accidental cross-contamination. In particular, the microbiological laboratory should be arranged so as to minimize risk of cross-contamination.”

According to 6.9 now all Out of Trend (OOT) and all Out of Specification (OOS) results have to be considered and need to undergo an investigation. Also, in 6.12. a new requirement asks for a sampling plan based on risk assessment. Further content supplements (in addition to others) deal with the subject of reference standards. The newly inserted text under 6.20 states “… their qualification and certification as such should be clearly stated and documented. Whenever compendial reference standards from an officially recognised source exist, these should preferably be used as primary reference standards unless fully justified (the use of secondary standards is permitted once their traceability to primary standards has been demonstrated and is documented). These compendial materials should be used”.

The regulations with regard to “Technical Transfer of Testing Methods” starting with point 6.37 up to 6.41 are completely new.

All attendees of ECA courses and conferences can download a document comparison between the current chapter 6 and the new version in the ECA website members’ area. In this comparison all changes and additions are marked. Otherwise please also see the new Chapter 6 Quality Control for more information.

 

Risk Assessment of Potentially Genotoxic Impurities within the Framework of Quality by Design

Figure

 

A strategy for the risk assessment of potentially genotoxic impurities is described that utilizes Quality by Design in an effort to furnish greater process and analytical understanding, ultimately leading to a determination of impurity criticality. By identifying the risks and parameters that most influence those risks, an enhancement of both product and process control is attained that mitigates the potential impact of these impurities. This approach calls for the use of toxicological testing where necessary, chemical fate arguments when possible, multivariate analyses to develop design space, and use of spiking data to support specifications. Strong analytical support, especially with the development of low-level detection methods, is critical. We believe that this strategy not only aids in the development of a robust API process but also delivers on the identification and subsequent mitigation of risks to a class of impurities that are of high interest in the field.

Risk Assessment of Potentially Genotoxic Impurities within the Framework of Quality by Design

Adam R. Looker, Michael P. Ryan, Bobbianna J. Neubert-Langille and Redouan Naji
Org. Process Res. Dev., 2010, 14 (4), pp 1032–1036
pp 1032–1036
Publication Date (Web): April 7, 2010 (Communication)
DOI: 10.1021/op900338g
Figure

Risk Assessment of Genotoxic Impurities in Marketed Compounds Administered over a Short-Term Duration: Applications to Oncology Products and Implications for Impurity Control Limits

Figure

Controlling impurities during drug development improves product quality and minimizes safety risks to the patient. Recent regulatory guidance on genotoxic impurities (GTIs) state that identified GTIs are unusually toxic and require lower reporting, identification, and qualification limits than outlined in the International Conference on Harmonization (ICH) guideline “Impurities in New Drug Substances Q3A(R2).” [ ICH Harmonized Tripartite Guideline: Impurities in New Drug Substances (Q3A), (R2); International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), 2006.] Patient safety is always the underlying focus, but the overall impurity control strategy is also driven by appropriate “as low as reasonably practicable” (ALARP)(2)procedures that include assessment of process capability and associated analytical techniques. In combination with ALARP, safe and appropriate GTI levels are currently identified using chronic toxicology-based limits calculated under the standard assumption of 70-years for exposure duration. This paper proposes a risk assessment approach for developing GTI limits based on shorter-term exposure durations by highlighting marketed anticancer compounds with limited dosing schedules (e.g., 2 years). These limits are generally higher than the defaulted threshold of toxicological concern (TTC of 1.5 μg/day) and can result in more easily developed and less complex analytical methods. The described approach does not compromise safety and can potentially speed life-saving medicines to patients.

Org. Process Res. Dev., 2010, 14 (4), pp 986–992
Publication Date (Web): June 7, 2010 (Concept Article)
DOI: 10.1021/op1000226
READ AT