Statement from FDA Commissioner Scott Gottlieb, M.D., on findings from the romaine lettuce E. coli O157:H7 outbreak investigation and FDA’s efforts to prevent future outbreaks

tatement from FDA Commissioner Scott Gottlieb, M.D., on findings from the romaine lettuce E. coli O157:H7 outbreak investigation and FDA’s efforts to prevent future outbreaks

Earlier this year, we experienced the largest E. coli O157:H7 outbreak the country has seen in the last decade, leaving hundreds sick and claiming the lives of five people who consumed contaminated romaine lettuce.
We’re committed to taking necessary actions to prevent future outbreaks like this and to improving the safety of leafy greens available in the marketplace. Since the next romaine growing season for the Yuma region is underway, it’s critical for all of us to understand what happened so we can identify the changes that can prevent future outbreaks and reduce the scope of any problems that could arise.
Since the first signs of the outbreak appeared…Continue reading

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm624867.htm?utm_campaign=11012018_Statement_findings%20from%20the%20romaine%20lettuce%20E.%20coli%20O157%3AH7&utm_medium=email&utm_source=Eloqua

November 1, 2018

Statement

Earlier this year, we experienced the largest E. coli O157:H7 outbreak the country has seen in the last decade, leaving hundreds sick and claiming the lives of five people who consumed contaminated romaine lettuce.

We’re committed to taking necessary actions to prevent future outbreaks like this and to improving the safety of leafy greens available in the marketplace. Since the next romaine growing season for the Yuma region is underway, it’s critical for all of us to understand what happened so we can identify the changes that can prevent future outbreaks and reduce the scope of any problems that could arise.

Since the first signs of the outbreak appeared, our team has collaborated closely with our state, federal and local partners to determine the root cause of the outbreak. Today, the U.S. Food and Drug Administration is sharing an environmental assessment that details final findings from this investigation.

One of the investigation’s main objectives was to identify factors that potentially contributed to the introduction and spread of the strain of E. coli O157:H7 that contaminated the romaine lettuce associated with this outbreak. The FDA, the Centers for Disease Control and Prevention, and the Arizona Department of Agriculture launched an investigation of the outbreak, leading to the collection of samples in Yuma in order to help gather evidence needed to identify the source of the outbreak.

The environmental assessment issued today confirms the presence of E. coliO157:H7 in three samples of irrigation canal water collected as part of this investigation in the Yuma region. It considers that the most likely way the romaine lettuce became contaminated was from the use of water from the irrigation canal, since the outbreak strain was not found in any of the other samples collected in the region. How the water contaminated the lettuce is uncertain. But based on interviews with growers and pesticide applicators, possible explanations include direct application of irrigation canal water to the lettuce crop or the use of irrigation canal water to dilute crop-protection chemicals applied to the crops through both aerial and land-based spray applications. We cannot rule out other ways the lettuce became contaminated. It’s important to note that we have no evidence that any other product grown in Yuma was contaminated by this water.

When and how the irrigation canal became contaminated with the outbreak strain of E. coli O157:H7 is also uncertain. We know that a large concentrated animal feeding operation (CAFO) is located adjacent to this stretch of the irrigation canal where the samples were collected. This is one potential source. However, the investigation did not identify an obvious route for contamination of the irrigation canal from this facility. In addition, samples collected at the CAFO did not yield E. coli O157:H7. The investigation did not exclude other ways the irrigation canal could have become contaminated with this outbreak strain.

With the growing season underway in Yuma, we know just how important it is to continue collaborating closely with industry and our regulatory partners to ensure that leafy greens are safe. To assist with these efforts, our environmental assessment recommends a number of steps that can be taken to reduce the likelihood of another tragic outbreak from occurring in the future. Working with the produce industry to further reduce the risk of outbreaks is a key priority for the FDA.

Fully implementing the Food Safety Modernization Act (FSMA) is critical to these efforts. We must continue to advance FSMA’s Produce Safety Rule in collaboration with our state regulatory partners and ensure that we craft agricultural water standards that work across the incredible diversity of commodities and growing conditions. The FDA has resources available to help industry comply with FSMA requirements, including produce safety experts regionally located as part of the FDA’s Produce Safety Network and growers in the Yuma region can find the contact information for their area at this website.

Because leafy greens are a highly perishable commodity, the ability to traceback the route of a food product as it moves through the entire supply chain, or traceability, is critical to removing the product from commerce as quickly as possible, preventing additional consumer exposures, and properly focusing any recall actions. During the romaine investigation we found the typical traceback process to be particularly challenging because much of the finished lettuce product contained romaine that was sourced from multiple ranches As a result, our investigation involved collecting documentation from each point in the supply chain to verify the movement of product back to the Yuma area. Complicating this already large-scale investigation, the majority of the records collected in this investigation were either paper or handwritten.

Going forward, both FDA and industry need to explore better ways to standardize record keeping and determine whether the use of additional tools on product packaging could improve traceability.

We strongly encourage the leafy greens industry to adopt traceability best practices and state-of-the-art technologies to help assure quick and easy access to key data elements from farm to fork. We also strongly encourage the leafy greens industry to explore modern approaches to standardized record keeping and the use of additional tools or labels on product packaging that could improve traceability. We urge all segments of this industry and our government partners to review the findings of our environmental assessment and make necessary changes. For our part, the FDA is exploring ways to best tap into new technologies to significantly reduce the time needed for traceback investigations.

The agency is taking steps to improve our response times and provide actionable information to consumers as quickly as possible. We are also looking at our regulatory options and considering appropriate enforcement actions against companies and farms that grow, pack, or process fresh lettuce and leafy greens under insanitary conditions. We continue to explore additional ways to improve these processes and urge all segments of the leafy greens industry to review their operations in the same way.

As a next step, the FDA plans to collect and analyze romaine lettuce samples through a new special surveillance sampling assignment for contamination with human pathogens. This will help us determine whether products are safe to enter the U.S. marketplace. If samples are found to be contaminated, the FDA will follow-up with fresh-cut leafy greens processors and their growers or suppliers to determine if these foods were produced under insanitary conditions that render them harmful to consumers and take the appropriate action to remove them from the market.

We recognize and appreciate the efforts that the leafy greens industry has taken to date. But we know more must be done on all fronts to help prevent future foodborne illness outbreaks. I remain committed to investing in the FDA’s food program and applying our food safety expertise as we work to better safeguard the U.S. food supply. We want food to be safe because it promotes the American industries that grow and produce these products. That’s part of our dedication to these efforts. But first and foremost, we pursue food safety measures as key parts of our public health mandate to protect American consumers

/////////////

FDA warns patients and doctors about risk of inaccurate results from home-use device to monitor blood thinner warfarin

FDA warns patients and doctors about risk of inaccurate results from home-use device to monitor blood thinner warfarin

The U.S. Food and Drug Administration today is warning patients and doctors, who use at-home or in-the-office medical devices to monitor levels of the blood thinner, warfarin, that certain test strips used with the devices may provide inaccurate results and should not be relied upon to adjust the drug dosage. Roche Diagnostics issued a voluntary recall of certain test strip lots used with its CoaguChek test meter devices. The recall involves more than 1.1 million packages of CoaguChek XS PT Test Strips that were distributed nationwide from Jan. 12, 2018 to Oct. 29, 2018. Today, the FDA announced this action as…Continue reading 

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm624904.htm?utm_campaign=11012018_PR_FDA%20warns%20of%20inaccurate%20test%20results%20for%20device%20to%20monitor%20warfarin&utm_medium=email&utm_source=Eloqua

 

November 1, 2018

Release

The U.S. Food and Drug Administration today is warning patients and doctors, who use at-home or in-the-office medical devices to monitor levels of the blood thinner, warfarin, that certain test strips used with the devices may provide inaccurate results and should not be relied upon to adjust the drug dosage. Roche Diagnostics issued a voluntary recall of certain test strip lots used with its CoaguChek test meter devices. The recall involves more than 1.1 million packages of CoaguChek XS PT Test Strips that were distributed nationwide from Jan. 12, 2018 to Oct. 29, 2018. Today, the FDA announced this action as a Class I recall, the most serious type of recall, which means use of these devices may cause serious injuries or death.

The FDA is warning patients and health care professionals that they should not rely on these test meter devices to monitor warfarin levels if they’re using test strips affected by the recall. Instead, they should have blood drawn from a vein and have their levels measured by a laboratory test or use an alternative meter device.

“These strips are widely used and we are working diligently to warn health care providers and the public about the dangers associated with this recall. Using faulty strips can lead to serious errors in medication dosage that could cause serious harm or death in some patients,” said Jeffrey Shuren, M.D., director of the FDA’s Center for Devices and Radiological Health. “We are also working with the company on the swift removal of the recalled strips and to ensure the new corrected strips are distributed to patients and health care providers as quickly as possible.”

Millions of Americans take the blood thinner warfarin (also known by the brand names Coumadin and Jantoven) to prevent and treat blood clots. The drug may be prescribed for patients with certain types of irregular heartbeats, blood clots in the legs or lungs, or certain medical device implants such as artificial heart valves. Achieving the correct warfarin dosage is crucial, and patients need regular monitoring to test how long it takes their blood to clot. The response is measured by a blood test to check the International Normalized Ratio, or INR. This test can be performed by an accredited laboratory on blood drawn from a vein or with a fingerstick blood draw using an INR test meter at home or in a doctor’s office.

The FDA’s warning concerning the CoaguChek XS PT Test Strips is based on medical device reports submitted by Roche Diagnostics to the agency indicating that the test strips may provide results that are higher than the actual INR. As a result of incorrect INR results, some patients may be prescribed an insufficient warfarin dose or instructed to interrupt warfarin use, which may increase the risk for dangerous blood clots. Approximately 90 medical device reports and two serious patient injuries involving strokes were reported to the FDA.

Incorrect INR results are of particular concern for individuals at an increased risk of blood clots including those with mechanical heart valves, atrial fibrillation (irregular heartbeat) who are at a high risk of stroke, or those who had a recent blood clot. It is important to note that problems with the CoaguChek XS PT test strips are not likely to be evident to the patient.

Roche Diagnostics attributes the cause of the problem to a recent re-calibration of the test strips to a different international standard that occurred earlier this year. They plan to provide new batches of re-calibrated test strips, based on the previous international standard, to their customers by the end of November; the FDA reviewed validation data submitted by the company for these recalibrated strips. The test strips are used with the CoaguChek XS plus, CoaguChek XS Pro, CoaguChek XS professional, CoaguChek XS PST and CoaguChek Vantus test meter devices.

Patients who are using CoaguChek meters should contact their health care provider to get information about alternative test methods and to address questions regarding their individual testing schedule. Patients should also contact their patient self-testing service providers to find out when they will be getting their corrected test strips. Health care providers and patients may contact Roche Diagnostics to learn more details about the recall.

All health care providers, patients and caregivers, are strongly encouraged to voluntarily report INR test meter problems directly to the FDA through MedWatch, the FDA’s voluntary reporting program. Problems should be reported whenever one suspects that there may be an issue with an INR test meter such as a malfunction or incorrect result, or that the meter caused or contributed to a serious injury or death.

The FDA is committed to continuing to communicate publicly on this issue and will provide updates related to this recall when available.

//////////////////

API, Impurities and Regulatory aspects

Image result for impurities
The impurities in pharmaceuticals are unwanted chemicals that remain with the active pharmaceutical ingredients (APIs) or develop during formulation or upon aging of both API and formulation. The presence of these unwanted chemicals even in trace amount may influence the efficacy and safety of pharmaceutical product
Impurities is defined as an entity of drug substances or drug product that is not chemical entity defined as drug substances an excipients or other additives to drugproduct.

The control of pharmaceutical impurities is currently a critical issue to the pharmaceutical industry. Structure elucidation of pharmaceutical impurities is an important part of the drug product development process. Impurities can have unwanted pharmacological or toxicological effects that seriously impact product quality and patient safety. Potential sources and mechanisms of impurity formation are discussed for both drugs. The International Conference on Harmonization (ICH) has formulated a workable guideline regarding the control of impurities. In this review, a description of different types and origins of impurities in relation to ICH guidelines and, degradation routes, including specific examples, are presented. The article further discusses measures regarding the control of impurities in pharmaceuticals substance and drug product applications.

Impurities in pharmaceuticals are the unwanted chemicals that remain with the active pharmaceutical ingredients (APIs), or develop during formulation, or upon aging of both API and formulated APIs to medicines. The presence of these unwanted chemicals even in small amounts may influence the efficacy and safety of the pharmaceutical products.

According to ICH, an impurity in a drug substance is defined as-“any component of the new drug substance that is not the chemical entity defined as the new drug substance”. There is an ever increasing interest in impurities present in APIs recently, not only purity profile but also impurity profile has become essential as per various regulatory requirements. The presence of the unwanted chemicals, even in small amount, may influence the efficacy and safety of the pharmaceutical products.

“In the pharmaceutical world, an impurity is considered as any other organic material, besides the drug substance, or ingredients, arise out of synthesis or unwanted chemicals that remains with API’s”

The control of pharmaceutical impurities is currently a critical issue to the pharmaceutical industry. The International Conference on Harmonization (ICH) has formulated a workable guideline regarding the control of impurities.

CLASSIFICATIONS OF IMPURITIES:
Impurities have been named differently or classified as per the ICH guidelines as follows:

A] Common names
1. By-products
2. Degradation products
3. Interaction products
4. Intermediates
5. Penultimate intermediates
6. Related products
7. Transformation products

B] United State Pharmacopeia
The United States Pharmacopoeia (USP) classifies impurities in various sections:
1. Impurities in Official Articles
2. Ordinary Impurities
3. Organic Volatile Impurities

C] ICH Terminology
According to ICH guidelines, impurities in the drug substance produced by chemical synthesis can broadly be classified into following three categories –
1. Organic Impurities (Process and Drug related)
2. Inorganic Impurities
3. Residual Solvents

Organic impurities may arise during the manufacturing process and or storage of the drug substance may be identified or unidentified, volatile or non-volatile, and may include
1. Starting materials or intermediates
2. By-products
3. Degradation products

Impurities are found in API’s unless, a proper care is taken in every step involved throughout the multi-step synthesis for example; in paracetamol bulk, there is a limit test for p-aminophenol, which could be a starting material for one manufacturer or be an intermediate for the others. Impurities can also be formed by degradation of the end product during manufacturing of the bulk drugs.

The degradation of penicillin and cephalosporin are well-known examples of degradation products. The presence of a β-lactam ring as well as that of an a-amino in the C6 or C7 side chain plays a critical role in their degradation.

The primary objectives of process chemical research are the development of efficient, scalable, and safe reproducible synthetic routes to drug candidates within the developmental space and acting as a framework for commercial production in order to meet the requirement of various regulatory agencies. Therefore, assessment and control of the impurities in a drug substance and drug product are important aspects of drug development for the development team to obtain various marketing approvals. It is extremely challenging for an organic chemist to identify the impurities which are formed in very small quantities in a drug substance and wearisome if the product is nonpharmacopeial. A study describes the formation, identification, synthesis, and characterization of impurities found in the preparation of API. A study will help a synthetic organic chemist to understand the potential impurities in API synthesis and thereby obtain the pure compound.
Care to taken ensure that desired drug metabolism, safety and clinical studies are not jeopardized by inconsistent purity or impurities having potential harmful toxicological properties,
As regulatory guidelines promulgated by the International Conference on Harmonization (ICH)(1) dictate rigorous identification of impurities at levels of 0.1%,
It is important to develop commercially viable processes for drug substance manufacture to allow greater and more affordable access in the health care sector. In regard to the process development of drug substances, it is essential to know the origin and method of control of any unwanted substances present in it. The limit should be controlled under the threshold of toxicological concern (TTC) for the purpose of ensuring safety and efficacy of the drug and to meet the requirements of various drug regulatory agencies.(2,3)
The impurities in drug substances mostly come from starting substrates, reagents, solvents, and side reactions of the synthetic route employed. Therefore, assessment and control of the undesired substances is an essential aspect of the drug development journey, with special consideration of patient health risk.(4,5)
The isolation/synthesis and characterization of process-related critical impurities (more difficult to control under the desired regulatory limits) of any drug substance in order to evaluate their origin/fate and thereafter their control strategies in the developed process as per International Council for Harmonisation (ICH) guidelines.(4)
The goal of pharmaceutical development is to develop process understanding and control which will yield procedures that consistently deliver products possessing the desired key quality attributes. To achieve this, the quality by design (QbD) paradigm has been employed in combination with process-risk assessment strategies to systematically gather knowledge through the application of sound scientific approaches.(6)
Ganzer et al. recently published an article about critical process parameters and API synthesis.(7) The article presented an in-depth discussion of a stepwise, process risk assessment approach to facilitate the identification and understanding of critical quality attributes, process parameters, and in-process controls. The primary benefit of working within the QbD conceptual framework and employing process risk assessment strategies is the reproducible delivery of high-quality active pharmaceutical ingredient (API). However, a secondary benefit is the ability to obtain regulatory flexibility with respect to filing requirements.(8)
The control of impurities observed in an API is critical in delivering an API of high quality. Identification and understanding of the mechanism of formation of process-related impurities are critical pieces of information required for the development of control strategies. In addition, to ensure a continuing supply of API for drug product clinical manufacture, timely identification of key impurities is essential. These synthesis-related impurities and their precursors are considered as critical impurities because they directly affect the quality and impurity profile of the API. It is our practice that critical impurities be identified if practicable. Therefore, the timely identification of critical impurities becomes an integral part of process development.
There are different approaches to the identification of impurities. Described, herein, a general strategy that we have used in our laboratory, which leads to the rapid identification of impurities. To identify the structure of a low-level unknown impurity, we usually use liquid chromatography/mass spectrometry (LC/MS)/high-resolution MS (HRMS) and tandem MS (MS/MS) for molecular weight (MW) determination, elemental composition, and fragmentation patterns. On the basis of the mass spectrometric data and knowledge of the process chemistry, one or more possible structure(s) may be assigned for the impurity, with definitive structure information obtained by inspection of the HPLC retention time, UV spectrum, and MS profile of an authentic compound.
If an authentic sample is not available, the isolation of a pure sample of the impurity is undertaken for structure elucidation using NMR spectroscopy. The isolation of low-level impurities is usually conducted using preparative HPLC chromatography
REFERENCES
 1 ICH Q3A Impurities in New Drug Substances, R2International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH)Geneva, Switzerland, October 2006http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3A_R2/Step4/Q3A_R2__Guideline.pdf.
  • 2. Patil, G. D.; Kshirsagar, S. W.Shinde, S. B.Patil, P. S.Deshpande, M. S.Chaudhari, A. T.Sonawane, S. P.Maikap, G. C.Gurjar, M. K.Identification, Synthesis, and Strategy For Minimization of Potential Impurities Observed In Raltegravir Potassium Drug SubstanceOrg. Process Res. Dev. 2012161422– 1429DOI: 10.1021/op300077m
  • 3. Huang, Y.; Ye, Q.Guo, Z.Palaniswamy, V. A.Grosso, J. A. Identification of Critical Process Impurities and Their Impact on Process Research and DevelopmentOrg. Process Res. Dev.200812632– 636DOI: 10.1021/op800067v

4. ICH Harmonised Tripartite Guideline Q3A(R): Impurities in New Drug SubstancesInternational Conference on HarmonizationGeneva2002.

5. Mishra, B.Thakur, A.Mahata, P. P. Pharmaceutical Impurities: A ReviewInt. J. Pharm. Chem.20155 (7), 232– 239

6 International Conference on Harmonisation (ICH) Guidelines; Q8, Pharmaceutical Development, 2005; Q9, Quality Risk Management, 2006.

GanzerW. R.MaternaJ. A.MitchellM. B.WallL. K. Pharm. Technol. 2005July 21–12.

NasrM. Drug Information Association Annual Meeting, Philadelphia, PA, June 19, 2006; Pharmaceutical Quality Assessment System (PQAS) in the 21st Century, 2006.

/////

FDA adds four tropical diseases to priority review voucher program to encourage drug development in areas of unmet need

Today, the U.S. Food and Drug Administration announced the addition of Lassa fever, chikungunya virus disease, rabies and cryptococcal meningitis to the list of tropical diseases. Applicants who submit applications for drug or biological products to prevent or treat these diseases may qualify for a tropical disease priority review voucher (PRV). A tropical disease PRV can be used to obtain priority review of a subsequent drug application that does not itself qualify for priority review.

August 23, 2018

Media Inquiries

  Theresa Eisenman
  301-796-2969

“Part of our work to protect and promote public health of Americans includes monitoring global diseases and pathogens and ensuring we have a robust pipeline of drugs and biologics to treat or prevent the spread of these infectious diseases. Today we’ve added four diseases to a program designed to encourage development of new drug and biological products to prevent or treat certain tropical diseases affecting millions of people throughout the world, including Lassa fever, which impacted more than 400 people during an outbreak in Nigeria earlier this year, killing over 100 people. Tropical diseases cause a significant health burden globally. Yet, there has been remarkably little progress over the past 50 years in drug and biologic development to treat and prevent these diseases,” said FDA’s Chief Scientist RADM Denise Hinton. “Although tropical diseases generally are uncommon in the United States, tourism, immigration and military operations are increasing the direct effect these diseases can have on the health of Americans. But because these diseases are found primarily in low- and lower-middle income countries, existing incentives have been insufficient to encourage the development of new and innovative drug and biological products. With the tropical disease priority review voucher program, Congress intended to stimulate development of drugs and biologics to prevent and treat infectious diseases for which there are no significant markets in developed nations and that disproportionately affect poor and marginalized populations.”

Today, the U.S. Food and Drug Administration announced the addition of Lassa fever, chikungunya virus disease, rabies and cryptococcal meningitis to the list of tropical diseases. Applicants who submit applications for drug or biological products to prevent or treat these diseases may qualify for a tropical disease priority review voucher (PRV). A tropical disease PRV can be used to obtain priority review of a subsequent drug application that does not itself qualify for priority review.

To be eligible for a tropical disease PRV, a drug application must meet the criteria in section 524 of the Federal Food, Drug, and Cosmetic Act. The criteria include that the application must be for the prevention or treatment of a “tropical disease.” Beyond the list of “tropical diseases” in the statute, the FDA can issue an order to designate additional diseases as “tropical diseases” if the agency determines that a disease has no significant market in developed nations and disproportionately affects poor and marginalized populations. Interested parties can submit additional disease candidates for designation to a public docket (FDA-2008-N-0567-0011) for the FDA’s consideration.

Products developed to treat or prevent Lassa fever, chikungunya virus disease, rabies and cryptococcal meningitis that meet the other criteria for eligibility can now qualify for tropical disease PRVs, hopefully helping to encourage development of safe and effective products for these harmful diseases.

USFDA has released GUIDANCE for Quality Attributes of *CHEWABLE TABLETS

Image result for Quality Attributes of *CHEWABLE TABLETS

 

*CQAs of CHEWABLE TABLETS (CT)*
USFDA has released GUIDANCE for Quality Attributes of *CHEWABLE TABLETS*
According to this latest guideline, FDA has recommended sponsor/applicant should also incorporate following CQAs:
*1. PATIENT ACCEPTABILITY*
Acceptable Taste, Mouthfeel & Aftertaste With-
*2. HARDNESS / BREAKING FORCE / CRUSHING STRENGTH*
Hardness of CTshould be kept  low  (i.e.  <12 kp).
A higher hardness  value  (e.g.,  >12 kp)  may  be  considered if  justified.  An example  of  such justification could be  demonstrating  significant disintegration and/or  reduction in hardness  of  such  tablets  following  brief  i.e.  30 seconds  in-vitro exposure to simulated saliva (1 mL) before chewing to ensure patient compliance without  GI  obstruction (choking in throat / blocking bowel movement) in the case if patient swallow tablet without chewing due to high hardness
*3. CHEWING DIFFICULTY INDEX*
CDI is a value derived from the relationship between two methods used for measuring tablet strength: diametral compression (diametrical tensile strength) and flexural bending (flexure tensile strength test), to ensure patient compliance without damage to teeth or dentures
CDI should be also evaluated before & after in-vitro exposure to 1 mL of simulated saliva for 30 seconds
*4. DISINTEGRATION & DISSOLUTION*
CT should  typically  meet the  same  disintegration  and dissolution specifications  as _IR  tablets_. In vitro DT & Dissolution testing  should be  conducted on  _intact_ chewable  tablets since  _it is  possible  that some  patients  might swallow  the  tablets  without chewing_.
*5. Others*
If functional coated particles are present in chewable tablet then applicant has to ensure its functionality even after chewing tablets.
////////////USFDA, GUIDANCE, Quality Attributes, CHEWABLE TABLETS

FDA approves new treatment Galafold (migalastat) for a rare genetic disorder, Fabry disease

New Drug Approvals

FDA approves new treatment for a rare genetic disorder, Fabry disease

The U.S. Food and Drug Administration today approved Galafold (migalastat), the first oral medication for the treatment of adults with Fabry disease. The drug is indicated for adults with Fabry disease who have a genetic mutation determined to be responsive (“amenable”) to treatment with Galafold based on laboratory data. Fabry disease is a rare and serious genetic disease that results from buildup of a type of fat called globotriaosylceramide (GL-3) in blood vessels, the kidneys, the heart, the nerves and other organs.

August 10, 2018

Release

The U.S. Food and Drug Administration today approved Galafold (migalastat), the first oral medication for the treatment of adults with Fabry disease. The drug is indicated for adults with Fabry disease who have a genetic mutation determined to be responsive (“amenable”) to treatment with Galafold based on laboratory data. Fabry…

View original post 441 more words

FDA approves first-of-its kind targeted RNA-based therapy Onpattro (patisiran) to treat a rare disease

New Drug Approvals

Image result for patisiranFDA approves first-of-its kind targeted RNA-based therapy to treat a rare disease

First treatment for the polyneuropathy of hereditary transthyretin-mediated amyloidosis in adult patients

The U.S. Food and Drug Administration today approved Onpattro (patisiran) infusion for the treatment of peripheral nerve disease (polyneuropathy) caused by hereditary transthyretin-mediated amyloidosis (hATTR) in adult patients. This is the first FDA-approved treatment for patients with polyneuropathy caused by hATTR, a rare, debilitating and often fatal genetic disease characterized by the buildup of abnormal amyloid protein in peripheral nerves, the heart and other organs. It is also the first FDA approval of a new class of drugs called small interfering ribonucleic acid (siRNA) treatment

Continue reading…

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/UCM616518.htm?utm_campaign=08102018_PR_FDA%20approves%20new%20drug%20for%20rare%20disease%2C%20hATTR&utm_medium=email&utm_source=Eloqua

August 10, 2018

Release

The U.S. Food and Drug Administration today approved Onpattro (patisiran) infusion for the treatment of peripheral nerve disease (polyneuropathy) caused by hereditary transthyretin-mediated amyloidosis (hATTR) in adult patients. This is the first FDA-approved treatment…

View original post 760 more words

FDA approves new vaginal ring for one year of birth control

New Drug Approvals

FDA approves new vaginal ring for one year of birth control

The U.S. Food and Drug Administration today approved Annovera (segesterone acetate and ethinyl estradiol vaginal system), which is a combined hormonal contraceptive for women of reproductive age used to prevent pregnancy and is the first vaginal ring contraceptive that can be used for an entire year. Annovera is a reusable donut-shaped (ring), non-biodegradable, flexible vaginal system that is placed in the vagina for three weeks followed by one week out of the vagina, at which time women may experience a period (a withdrawal bleed). This schedule is repeated every four weeks for one year (thirteen 28-day menstrual cycles).

August 10, 2018

Release

The U.S. Food and Drug Administration today approved Annovera (segesterone acetate and ethinyl estradiol vaginal system), which is a combined hormonal contraceptive for women of reproductive age used to prevent pregnancy and is the…

View original post 378 more words

National award to Anthony Melvin Crasto for contribution to Pharma society from Times Network for Excellence in HEALTHCARE) | 5th July, 2018 | Taj Lands End, Mumbai, India

times now 1

DR ANTHONY MEVIN CRASTO Conferred prestigious individual national award at function for contribution to Pharma society from Times Network, National Awards for Marketing Excellence ( For Excellence in HEALTHCARE) | 5th July, 2018 | Taj Lands End, Mumbai India

times now 5

TIMES NOW 2 TIMES NOW 3

times 4

////////////National award,  contribution to Pharma society, Times Network, Excellence in HEALTHCARE,  5th July, 2018, Taj Lands End, Mumbai,  India, ANTHONY CRASTO

#hotpersoninawheelchair
#worlddrugtracker

EMA modernizing the Orphan designation process

Image result for orphan designation

EMA modernizing the orphan designation process

On June 19, 2018, the European Medicines Agency (EMA) launched a new secure online portal for Orphan Designation (OD) applications. The portal, named ‘Iris’, provides a single window where applicants can submit and manage the information and documents related to their applications for orphan designation ref 1. This initiative is expected to reduce the time required to prepare and submit the applications. During the review process, applicants can check the status of their applications from any device and receive automatic notifications when the status of the application changes.

About Iris

IRIS is the online web portal through which applicants can apply to the EMA for orphan designation for a medicine. EMA plans to expand the scope of this portal to cover other regulatory and scientific procedures. This new process, which will become mandatory after September 19, 2018, for procuring orphan designation, requires the following steps to be completed before any activity relating to an orphan designation procedure can be carried out using the new IRIS Portal ref 2:

a) Both the Applicant and Sponsor of an orphan designation, or persons acting on their behalf, must have an active EMA user account and must be registered with IRIS user access roles of either ‘Orphan Industry Manager’ or ‘Orphan Industry Contributor.

b) The ‘Organization’ for which the OD application is being submitted must be registered in the EMA’s Organization Management System (OMS);

c) The ‘Substance(s)’ for which the application is being submitted must be registered and appear on the official EMA list of all substances, the European Union Telematics Controlled Terms (EUTCT) database;

d) Each new OD application must have a Research Product Identifier (RPI) – the process for requesting an RPI will be required before OD application.

About orphan drug designation

The European Medicines Agency (EMA) plays a central role in facilitating the development and authorization of medicines for rare diseases, which are termed ‘orphan medicines’ in the medical world. The medicine must fulfil following criteria for designation as an orphan medicine so that it can benefit from incentives such as protection from competition once on the market

It must be intended for the treatment, prevention or diagnosis of a disease that is life-threatening or chronically debilitating;

The prevalence of the condition in the EU must not be more than 5 in 10,000 or it must be unlikely that marketing of the medicine would generate sufficient returns to justify the investment needed for its development;

No satisfactory method of diagnosis, prevention or treatment of the condition concerned can be authorized, or, if such a method exists, the medicine must be of significant benefit to those affected by the condition.

Image result for orphan designation

19/06/2018

Modernising the orphan designation process

EMA launches new submission portal today

The European Medicines Agency (EMA) has launched a new secure online portal for orphan designationExternal link icon applications.

The portal, named ‘Iris’, provides a single space where applicants can submit and manage the information and documents related to their applications for orphan designation. This is expected to reduce the time needed to prepare and submit the applications. During the review process, applicants can check the status of their applications from any device and receive automatic notifications when the status of the application changes.

Iris is part of a longer-term programme that aims to make the handling of product-related applications easier and utilises the domains of master data in pharmaceutical regulatory processes (SPOR).

Applicants will still be able to use the existing submission process until 19 September 2018. However, the Agency strongly encourages companies to start using the new portal from today.

In order to help applicants with the transition, EMA has developed two guidance documents. These step-by-step guides provide detailed instructions on how to use the new system and explain what has changed with its introduction.

EMA tested a pilot of the new system in March 2018 with 35 volunteers from 26 different organisations. Feedback from this test helped EMA to optimise the portal and showed high levels of satisfaction.

In future, the new system may be extended to include other procedures, taking user feedback and experience into account.

12 http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2018/06/news_detail_002976.jsp&mid=WC0b01ac058004d5c1

13 http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2018/06/WC500250762.pdf

Note- In order to help applicants with the transition, EMA has developed two guidance documents. These stepby-step guides provide detailed instructions on how to use the new system and explain what has changed with its introduction.

//////iris, ema, orphan designation process

Elemental Impurities

Image result for elemental impurities

Elemental Impurities

On January 1, 2018, new guidelines regarding elemental impurities in brand and generic drug products went into effect. Elemental impurities, such as arsenic and lead, pose toxicological risks to patients without providing any therapeutic benefit. These impurities may be present in drug products from a variety of sources, such as interactions with equipment during the drug manufacturing process.

FDA, together with other organizations, such as the International Council for Harmonisation (ICH) and the U.S. Pharmacopeial Convention (USPC), have engaged in long-standing efforts to best protect patients from the risks posed by elemental impurities by developing limits for their amounts in drug products, and standardized approaches to use in determining the amount of elemental impurities in these products.

As of January 1, 2018:

  • All new and existing NDAs and ANDAs for drug products with an official USP monograph are required to meet the requirements in USP General Chapters <232> and <233> for the control of elemental impurities.
  • Applicants submitting NDAs and ANDAs for drug products without a USP monograph are expected to follow the recommendations in the ICH Q3D Elemental Impuritiesdisclaimer icon guideline.


Questions and Answers on Elemental Impurities
:

Why were these guidelines developed, and why are they important?

Heavy metal elemental impurities pose serious risks to patients without providing a benefit. Modern methods provide better analytical tests to detect elemental impurities, which in turn, will help protect patients by ensuring approved products have safe levels of these impurities. The ICH guidelines and USP General Chapters <232>Elemental Impurities—Limits are focused on establishing Permitted Daily Exposures (PDEs) for elemental impurities in drug products. USP General Chapter <233>Elemental Impurities—Procedures describes analytical approaches for the detection of elemental impurities. The analytical approaches described in <233> are based on modern analytical capabilities, replace the outdated tests in the deleted USP General Chapter <231> Heavy Metals, and allow us to more precisely measure impurities to ensure safe levels. FDA, ICH, USP, and industry experts worked together to develop the new standards that are in alignment and help ensure high quality medicines.

How has FDA been supporting industry to implement the requirements?

FDA, ICH, and USP have all engaged with brand and generic drug manufacturers to support implementation of these requirements. These requirements are the result of long-standing efforts, and both ICH and USP included industry participants on their expert panels that developed these standards. With that input, an implementation date was identified that provided firms with substantial time to verify their operations met the requirements.

In June 2016, FDA published a draft guidance, Elemental Impurities in Drug Products, to provide recommendations regarding the control of elemental impurities of human drug products. The draft guidance encouraged the early adoption of ICH Q3D guidelines and USP General Chapters <232> and <233> before the January 1, 2018 implementation date. FDA has also presented on this topic at conferences, including at a two-day ICH Q3D regional workshop it hosted in August 2016 1. These outreach efforts have supported efforts by industry to perform the risk assessments needed to implement the new guidelines in order to have complete, approvable applications. On an application-specific level, FDA began noting this requirement in complete response letters to applicants that contained quality deficiencies in Spring of 2017.

What should companies do if they have questions about elemental impurity standards?

Companies that have quality questions regarding elemental impurities and their applications should contact the Regulatory Business Process Manager (RBPM) in the Office of Program and Regulatory Operations, Office of Pharmaceutical Quality for their application. Applications that do not meet the elemental impurity guidelines are unable to be approved and applicants may receive a request for the information from the FDA in the form of an Information Request or a Complete Response letter. Firms should submit information on their elemental impurity risk assessments to FDA as soon as they are able, rather than waiting for a request from FDA, in order to minimize the impact on review and approval timeframes. The following resource may help applicants understand the process moving forward depending on where they are in the review process.

What is the International Council for Harmonisation?

ICH, first created in 1990 by regulatory agencies and both brand and generic drug manufacturing associations from the United States, Europe, and Japan, was established to facilitate international collaboration, and has been successful in standardizing and elevating drug development practices throughout the world. ICH’s mission helps to increase patient access to safe, effective, and high quality pharmaceuticals, and to ensure that pharmaceuticals are developed and registered efficiently. International harmonization of regulatory standards means that pharmaceutical manufacturers and developers will be held to the same standards in different markets (countries), which will make the development and delivery of quality pharmaceuticals to the public more timely and efficient. The ICH Website includes training modules on implementation of the Q3D elemental impurity guidelines.

What is the U.S. Pharmacopeia Convention?

The United States Pharmacopeia Convention (USPC) is a private non-profit organization that develops public standards related to pharmaceutical quality. USP General Chapters <232>Elemental Impurities—Limits, and, <233>Elemental Impurities—Procedures are applicable to compendial drug products as per Federal Food, Drug, and Cosmetic Act Sec. 201(j), and Sec. 501(b). USP’s website offers information regarding the history of actions they have taken on elemental impuritiesdisclaimer icon, as well as other FAQdisclaimer icon.


1 Other presentations include the Drug Information Association’s CMC Workshop 2015disclaimer icon, the Consumer Healthcare Products Association’s 2015 Regulatory, Scientific & Quality Conferencedisclaimer icon, the Product Quality Research Institute (PQRI) / USP Workshop on ICH Q3D Elemental Impurities Requirementsdisclaimer icon, the Generic Pharmaceutical Association (now Association of Affordable Medicines) CMC Workshopdisclaimer icon, the USP Excipients Stakeholder Forum, the PQRI/USP Workshop on Implementation Status of ICH Q3Ddisclaimer icon, and the PQRI/USP Workshop on ICH Q3D Elemental Impurities Requirements – Recent Experience and Plans for Full Implementation in 2018disclaimer icon

Elemental Impurities


Efforts in this area are currently focused on three fronts:

  • Finalization of risk assessments to ensure compliance with the ICH Q3D guideline for all products supplied to those markets having implemented ICH Q3D and to the date for implementation

  • Continued development of ICH Q3D dermal limits

  • Removal of the heavy metals limit test USP <231>

  • Image result for elemental impurities
  • Image result for elemental impurities

Marketed Product Compliance

When it was published at the end of 2014, ICH Q3D(1) provided a 3 year moratorium in relation to established products, meaning that all such products would have to demonstrate compliance with the guideline at the end of 2017. Many involved will testify to the Herculean effort required to complete this within large organizations where hundreds if not thousands of products were within scope. What has been the outcome? Informal feedback within the industry is that aside from a small number of products, organizations have found that the vast majority of products assessed require no additional control measures because they already have appropriate quality control measures.

Elemental Impurities within Excipients

The ICH Q3D guideline describes how a risk-based approach to the control of elemental impurities in drug products can be taken, highlighting within this that assessments should be data-driven. Options in terms of data include both data generated specific to a drug product and published data. In 2015 the U.S. Food and Drug Administration (FDA) and the European International Pharmaceutical Excipient Council (IPEC) jointly published the outcome of a focused study on some 200 excipient samples covering a range of excipients. This concluded that the overall risk associated with excipients, including those that are mined, was relatively low, especially when typical proportions in formulated drug products were considered. With the express aim of building upon this initial study, a consortium of pharmaceutical companies has established a database to collate the results of analytical studies of the levels of elemental impurities within pharmaceutical excipients. This database currently includes the results of over 25 000 elemental determinations for over 200 different excipients and represents the largest known, and still rapidly expanding, collection of data of this type.
Image result for elemental impurities
A recently published analysis of the database(2) examined a series of aspects, including data coverage as well as impurity levels and variability (across supplier/grade, etc.). The database includes results from multiple analytical studies for many of the excipients and thus can give a clear indication of both excipient supplier and batch-to-batch variability as well as any variability associated with the different testing organizations and methods employed. The results are telling. Critically, the data confirm the findings of earlier, smaller FDA–IPEC studies showing that elemental impurity concentrations in excipients, including mined excipients, are generally low and when used in typical proportions in formulated drug products are unlikely to pose a significant patient safety risk.
The database is now in active use within member organizations, providing real evidence in support of holistic ICH Q3D risk assessments and in the future potentially significantly reducing the need for testing. However, it is necessary to recognize that there was a sense that mined excipients could still present a risk over the long term. That variability in elemental impurity levels within mined excipients will vary over time, and further data will be required. There is therefore a need for continued collaboration between the pharmaceutical industry and excipient manufacturers.
It is interesting to reflect that had such studies been conducted ahead of finalization of ICH Q3D, it is possible that it would have allowed us to eliminate concerns about elemental impurities, at least for some low-risk excipients Another study could have achieved the same outcome for manufacturing equipment.
Image result for elemental impurities

Removal of Heavy Metals Testing

Perhaps our biggest challenge as an industry in this area relates to the potential to remove existing empirical testing for elemental impurities using the wet-chemistry heavy metals limit test because of differences in the global regulatory landscape. In the case of the United States Pharmacopeia (USP), this takes the form of the now-deleted USP Chapter <231>.
On the basis of the time scale for implementation of ICH Q3D, most organizations are well-advanced in terms of the risk assessment of current products, as described above. In the clear majority of cases, this successfully demonstrates that the heavy metals test does not provide any additional control for elemental impurities. On this basis, it should therefore be possible to remove the heavy metals limit test, of which USP <231> is the most prevalent example.
Image result for elemental impurities
The situation in the U.S. is that removal is relatively straightforward, as the test has already been removed from the USP. A statement to confirm completion of an elemental impurity risk assessment is then provided in the product annual update. Elsewhere, the situation is more challenging. In Europe there is no definitive position, but filing a simple show-and-tell type 1A variation seems to provide a pathway. Thereafter, the situation is considerably more complex.
In Japan, the equivalent of the USP <231> test has been retained in the Japanese Pharmacopeia (JP). Consequently, removing the test from an existing product (one where a monograph is published and it includes such a test) may require submitting a product-specific request to revise the individual monograph. It is also anticipated that removal of the test from approved but not monographed products will also require a post-approval change submission.
In China, the Chinese Pharmacopeia (CP) will retain the test until at least 2020, and the indication is that the test should still be performed where registered.
Image result for elemental impurities
Outside of ICH regions, the situation is still more complicated. Given the prevalent position of the USP in many countries, API and product specifications often include USP <231>. However, this test no longer exists! The challenge then concerns whether the test can be removed and the specification revised, and if so, how this should be done. The scale of this is significant, especially if a formal variations procedure is needed. One apparent option is to continue testing, but even this is complicated, as it is not clear how one could continue to use a test that no longer exists in the USP. Some organizations have even considered developing a “USP <231>-like” test.
Clearly, organizations do not want to continue to use an empirical test when a risk assessment has shown that it adds no value, but at present there is no obvious way to resolve this conundrum for globally marketed products until significant harmonization in compendial test requirements is achieved.
Image result for elemental impuritiesImage result for elemental impuritiesImage result for elemental impurities
REFERENCES
1 Guideline for Elemental Impurities Q3D, Current Step 4 version, dated Dec 16, 2014.
Boetzel, R.Ceszlak, A.Day, C.An Elemental Impurities Excipient Database: A Viable Tool for ICH Q3D Drug Product Risk AssessmentJ. Pharm. Sci. 2018DOI: 10.1016/j.xphs.2018.04.009
//////////Elemental Impurities, ICH Q3D, USP

ICH Q12: Guideline on Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management

Image result for ICH Q12

ICH Q12: Guideline on Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management, 1-2

Image result for ICH Q12

Recent ICH quality guidelines (Q8–Q11)(3−6) have focused on providing guidance on the development and manufacture of drug substances (Q11)(6) and drug products (Q8),(3) showing “baseline” and “enhanced” scientific approaches, and utilizing quality risk management tools (Q9) within the pharmaceutical quality management system (Q10). To further support the implementation of these development and manufacturing approaches, ICH recognized the value in providing tools and approaches for the management of post-approval chemistry, manufacturing, and controls (CMC) changes based on product and process understanding that could be employed by all ICH participants. Several useful tools had been established in different regions, and it was recognized that pharmaceutical innovation and continuous improvement would be optimally supported if best practices could be employed in similar ways across the regions. Achieving this harmonization would result in more efficient manufacture and change and would also increase the value of the pharmaceutical quality system and support continued optimization of the utilization of valuable resources within regulatory agencies and inspectorates (e.g., toward oversight of critical rather than noncritical changes, incentivizing industry’s understanding and management of manufacturing). The ICH Concept Paper for the development of this guidance was endorsed in 2014.(7)
The drafted consensus document is now available for public comment (step 2 of the ICH process),(8) with comments being collected by the regions during 2018 (with various comment deadlines).
The draft guidance includes some potentially very important approaches for future CMC change management, and importantly, the tools and approaches being developed are seen as usable across the range of pharmaceutical product types (including drug–device combinations) and applicable to existing products as well as newly approved products.
An approach of particular importance that is included in the guideline is the “post-approval change management protocol” (PACMP), which allows for specific changes to be predescribed to regulators and agreement to be reached on the scientific approach and data expectations that will support the change. This ability to predefine how to successfully make a change will bring great clarity and predictability to the planning and prosecution of, particularly, complex change types (often viewed as major changes needing “prior approval” in current regulatory change systems). Furthermore, the predetermination of data necessary to support the change allows for the final communication of the change to be a simple matter of confirming the suitability of the change with the expected data and for the regulatory change class to be reduced on the basis of the prior agreement of the change management approach. Importantly, a PACMP can be either agreed for a single change for a single product or constructed and agreed in a more wide-ranging manner to support multiple similar changes to be conducted on more than one product. This is of immense potential value to industry and regulators alike. Annex II of the draft guideline provides illustrative examples of different types of PACMPs, giving an example of a PACMP for a single change (to a manufacturing site for a drug substance) and an example of the more general management of such a site change.
In a section of the guideline on supporting post-approval changes for marketed products, where considerable manufacturing experience has been accrued, important approaches are given for the management of changes in analytical procedures and discussing how data requirements for changes (for stability data) can be impacted by product and process understanding.
In addition, the guidance seeks to provide an approach to differentiate the levels of regulatory oversight of particular changes on the basis of known impact and criticality of the potential change to product quality. The ability to differentiate change expectations on the basis of actual product understanding is a natural extension of the approaches taken in ICH Q8 and Q11, where for example product and process understanding can establish a “Design Space” for manufacturing and control within which changes are not seen as requiring regulatory oversight. In the draft of Q12, this concept is further developed by the concept of “Established Conditions” (ECs), with discussion of how investment in understanding can impact submission expectations (with Appendix I of the draft guideline providing an illustration of CTD sections that contain ECs and Annex I suggesting illustrative examples of ECs for both chemical products and biological products) and post-approval change management expectations. Importantly, the guidance discusses how this approach could be used for existing products, where the manufacturing process may have been described without any differentiation of change management expectations, leading to inefficient use of both industry and regulatory resources.
The draft guideline also includes a suggested system for the collation of such “agreed” regulatory change mechanisms for a product via use of a product lifecycle management (PLCM) approach, wherein the agreed changes can be clearly collated alongside the manufacturing commitments and the agreed (lesser) change reporting category for the changes. Annex III of the draft documentation provides an example of a PLCM document.
The guideline also contains content describing the pharmaceutical quality system (PQS) change management expectations (with Appendix II of the guideline providing further illustration of principles of change management) and the relationship between industry and regulators and importantly between regulatory assessment and inspection needed to support strong implementation of the approaches within Q12.
The draft guideline clearly already provides tools and approaches for change management of immense potential value. Nevertheless, the opportunity to comment on the draft is always an important step in the development of an ICH guideline, and it is important to ensure that comments assist in providing the clearest possible final guidance that will be readily and consistently implemented to mutual industry and regulator benefit. It is noteworthy that the current draft of the guideline includes wording suggesting that some concepts may not be implementable at the current time across every region. It will be of greatest benefit if the tools and approaches as described and agreed in the finalized guidance will be available for use on as wide a global basis as possible, in line with the ongoing vision of ICH for science-based, harmonized, and efficient regulation of pharmaceuticals.
Image result for ICH Q12
3  Pharmaceutical Development Q8(R2), Current Step 4 version, dated August 2009.
4 Quality Risk Management Q9, Current Step 4 version, dated Nov 9, 2005.
5 Pharmaceutical Quality System Q10, Current Step 4 version, dated June 4, 2008.
6 Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities) Q11, Current Step 4 version, dated May 1 2012.
7 Final Concept Paper Q12: Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management, dated July 28 2014, endorsed by the ICH Steering Committee on Sept 9, 2014.
8 Technical and Regulatory Considerations for Pharmaceutical Product Lifecycle Management Q12, draft version endorsed on Nov 16, 2017.

////////////////ICH Q12, Guideline, Technical and Regulatory Considerations, Pharmaceutical Product, Lifecycle Management