ema

Report from the EMA-FDA QbD pilot program

Posted on Updated on

Image result for QBDReport from the EMA-FDA QbD pilot program

In March 2011, the European Medicines Agency (EMA) and the United States Food and Drug Administration (US FDA) launched, under US-EU Confidentiality Arrangements, a joint pilot program for the parallel assessment of applications containing Quality by Design (QbD) elements.

The aim of this program was to facilitate the consistent implementation of QbD concepts introduced through International Council for Harmonisation (ICH) Q8, Q9 and Q10 documents and harmonize regulatory decisions to the greatest extent possible across the two regions.

To facilitate this, assessors/reviewers from US and EU exchanged their views on the implementation of ICH concepts and relevant regulatory requirements using actual applications that requested participation into the program. The program was initially launched for three years. Following its first phase, both agencies agreed to extend it for two more years to facilitate further harmonization of pertinent QbD-related topics.

The program officially concluded in April 2016. During this period, the agencies received 16 requests to participate. One submission was rejected because the approach presented was not limited to QbD applications, and another application was not reviewed because it was never filed by the applicant.

In total, two Marketing Authorisation Applications (MAA)/New Drug Applications (NDA), three variation/supplements and nine scientific advice applications were evaluated under this program. One MAA/NDA was assessed under the parallel assessment pathway, with the rest following the consultative advice route. Based on the learnings during the pilot, FDA and EMA jointly developed and published three sets of Question and Answer (Q&A) documents.

These documents also addressed comments from the Japanese Pharmaceuticals and Medical Devices Agency (PMDA), which participated as an observer, offering input to further facilitate harmonization. The objective of these Q&A documents was to generate review guides for the assessors/reviewers and to communicate pilot outcomes to academia and industry.

Additionally, these documents captured any differences in regulatory expectations due to regional requirements, e.g. inclusion of process validation information in the dossier. The following topics were covered in each of the three Q&A documents: –

Q&A (1) published on Aug 20, 2013 included the following topics: (a) Quality target product profile (QTPP) and critical quality attributes (CQA), (b) Criticality, (c) Level of detail in manufacturing process descriptions, and (d) QbD for analytical methods1 –

Q&A (2) published on Nov 1, 2013 on Design Space Verification, that included definition, presentation, justification (including potential scale-up effects) and verification of design spaces both for active substances and finished products2 –

Q&A (3) published on Dec 19, 2014 included the following topics: (a) Level of detail in the dossier regarding Risk Assessment (RA), (b) Level of detail in the dossier regarding Design of Experiments (DOE) and Design Space3 R

 

Additionally, the FDA-EMA pilot provided the agencies an opportunity to harmonize regulatory expectations for the following precedent-setting applications that were reviewed under the consultative advice pathway: – The first continuous manufacturing (CM) based application submitted to both agencies.

Based on the learnings from this application, the following areas related to CM were harmonized: batch definition; control of excipients; material traceability; strategy for segregation of nonconforming material; real-time release testing (RTRT) methods and prediction models; and good manufacturing practice (GMP) considerations for RTRT, validation strategy, models, and control strategy. – A post approval supplement that included a broad based post-approval change management plan/comparability protocol.

Both agencies were harmonized on the expected level of detail in the protocol and considerations for implementation of a risk based approach to evaluate the changes proposed in the protocol. In line with the scope of the QbD pilot program, joint presentations of key findings were publically presented and discussed with stakeholders at different conferences.

These included the Joint EMAParenteral Drug Association QbD workshop4 organized in 2014 which also included participation from FDA and PMDA.

Overall, it is concluded that, on the basis of the applications submitted for the pilot, there is solid alignment between both Agencies regarding the implementation of multiple ICH Q8, Q9 and Q10 concepts. The FDA/EMA QbD pilot program opened up a platform for continuous dialogue which may lead to further communication on areas of mutual interest to continue the Agencies’ support for innovation and global development of medicines of high quality for the benefit of patients.

Both agencies are currently exploring potential joint activities with specific focus on continuous manufacturing, additional emerging technologies, and expedited/accelerated assessments (e.g. PRIME, Breakthrough). Additionally, EMA and FDA are hosting experts from each other’s organisations to facilitate dialog and explore further opportunities.

References: 1. EMA-FDA pilot program for parallel assessment of Quality-by-Design applications: lessons learnt and Q&A resulting from the first parallel assessment http://www.ema.europa.eu/docs/en_GB/document_library/Other/2013/08/WC500148215.pdf

2. FDA-EMA Questions and Answers on Design Space Verification http://www.ema.europa.eu/docs/en_GB/document_library/Other/2013/11/WC500153784.pdf

3. FDA-EMA Questions and answers on level of detail in the regulatory submissions http://www.ema.europa.eu/docs/en_GB/document_library/Other/2014/12/WC500179391.pdf

4. Joint European Medicines Agency/Parenteral Drug Association quality-by-design workshop http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/events/2013/12/event_detai l_000808.jsp&mid=WC0b01ac058004d5c3

EMA publishes Q&A on Health Based Exposure Limits – Does the 1/1000 dose criterion come again into play in Cleaning Validation?

Posted on

STR1

In 2014 the European Medicines Agency (EMA) issued the Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities. This publication triggered a discussion about the Permitted Daily Exposure (PDE) values in the Pharmaceutical and even in the API Industry, especially regarding crosscontamination and cleaning validation. Now a draft of a Q&A paper from the EMA provides some concretisation.

Image result for Cleaning Validation

http://www.gmp-compliance.org/enews_05736_EMA-publishes-Q-A-on-Health-Based-Exposure-Limits—Does-the-1-1000-dose-criterion-come-again-into-play-in-Cleaning-Validation_15560,15661,15963,Z-VM_n.html

In 2014 the European Medicines Agency (EMA) issued the Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities. As mentioned in the publication itself, this document triggered a discussion about the Permitted Daily Exposure (PDE) values in the Pharmaceutical and even in the API Industry, especially regarding crosscontamination and cleaning validation. Now, the draft of a question & answer paper from the European Medicines Agency provides some concretisation of the guideline.

The document altogether comprises five pages with 14 questions and answers.

The questions – and even more the answers – are very interesting, as shown in question 1 already: Do companies have to establish Health Based Exposure Limits (HBELs) for all products?

The answer is: Yes, but there are references to question 2 and 4 (and their respective answers). Question 2 clarifies what products/active substances are considered as highly hazardous. There are, among others, 5 groups listed, which products should be classified as highly hazardous (e.g.compounds with a high pharmacological potency, daily dose < 1 mg/day (veterinary dose equivalent 0.02 mg/kg)). For highly hazardous substances the answer yes in question 1 is expected. Even more interesting is the link to question and answer 4: Can calculation of HBELs be based on clinical data only (e.g. 1/1000th of the minimum therapeutic dose)? And the answer is yes, but only at designated circumstances. This means the products should have a favourable therapeutic index (safety window) and the pharmacological activity would be the most sensitive/critical effect.

Some further clarification regarding LD 50 is provided in Question 5 and the respective Answer: The use of LD 50 to determine health based limits is not allowed.

There are also more questions and answers regarding Veterinary Medicinal Products, the inspection of the competence of the toxicology expert developing HBELs, Occupational Exposure Limits, cleaning limits, Investigational Medicinal Products and paedric medicinal products and about Cross Contamination. Details will follow.

The document is still a draft and the industry has the opportunity to comment it until the end of April 2017. Let´s see what the final version will bring.

Please also see the draft Questions and answers on implementation of risk based prevention of cross contamination in production and ‘Guideline on setting health based exposure limits for use in risk identification in the manufacture of different medicinal products in shared facilities’on the EMA website.

At ECA´s Cleaning Validation Course, 9-10 February 2017 in Heidelberg, Germany the EMA Q&A draft will also be discussed.

some pics

Image result for Cleaning Validation
Image result for Cleaning Validation
Image result for Cleaning Validation
Image result for Cleaning Validation
Image result for Cleaning Validation
Image result for Cleaning Validation

///////////EMA, Q&A , Health Based Exposure Limits, 1/1000 dose , criterion,  Cleaning Validation,

EMA issues new Guideline on “Chemistry of Active Substances”

Posted on

Image result for active substances

The new EMA “Guideline on the chemistry of active substances” represents the current state of the art in regulatory practice and fits into the context of the ICH Guidelines Q8-11. Find out what information regarding active substances European authorities expect in an authorization application.

http://www.gmp-compliance.org/enews_05704_EMA-issues-new-Guideline-on-%22Chemistry-of-Active-Substances%22_15982,15721,S-WKS_n.html

A medicinal product authorization application requires comprehensive information on origin and quality of an active substance. What information is required was defined in two Guidelines so far: the Guideline “Chemistry of Active Substances” (3AQ5a) from 1987 and the “Guideline on the Chemistry of New Active Substances” from 2004. Because both Guidelines’ content do not take into account the ICH Guidelines Q8-11 issued in the meantime and do thus not meet the current state of the art in sciences and in regulatory practice, the EMA Quality Working Party (QWP) developed an updated document  entitled “Guideline on the chemistry of active substances” (EMA/454576/2016), which was issued on 21 November.

The new Guideline describes the information on new or already existing active substances required in an authorization dossier. In the context of this Guideline “already existing” ingredients are those that are used in a product already authorized in the EU.

In detail the information and data regarding the substance have to be included in the following chapters of the CTD:

3.2.S.1: Nomenclature, information on the structural formula, pharmacological relevant physicochemical properties.

3.2.S.2: Information on the manufacturer(s), contractor(s), testing facilities etc.; description of the manufacturing processes (schematic representation with flow diagram as well as narrative); where appropriate detailed information on alternative manufacturing processes, for recovering of solvents and for routine reprocessing. Information with regard to re-working should not be included in the authorization dossier.

3.2.S.2.3: Information for controlling the material used during the manufacture and for its specification (incl. identity test). This paragraph is more comprehensive in the new Guideline compared with its predecessor and takes into account the requirements of the ICH Guideline Q11. This Guideline comprises requirements for the following materials: materials from biological sources, those used for the chemical synthesis of starting materials, materials from herbal origin, excipients like solvents (incl. water), reagents, catalysts etc.

3.2.S.2.4: Information on critical process steps (the Guideline comprises examples for these critical steps) as well as on quality and control of isolated intermediates within the synthesis steps. All information has to be provided with the appropriate justifications.

3.2.S.2.5: Information on Process Validation

3.2.S.2.6: Information on the development of the manufacturing process. Here all changes have to be described that were performed during the various phases (pre-clinical, clinical, scale-up, pilot and possibly production phase) of the process for new active substances. For already existing active substances available in production scale no information on process development is needed.

3.2.S.3: Information on Characterisation. Comprehensive information on the elucidation of the structure of the active substance, its physico-chemical properties and its impurities profile have to be provided. Further, the mutagenic potential of degradation products has to be considered. The analytical methods have to be described and their suitability has to be justified.

3.2.S.4: Information on the control of active substances. The analytical procedures and their validation have to be described. Data for the analytical method development should be provided if critical aspects of the analysis regarding the active substance’s specification need to be clarified. Analytical data are necessary for batches for pre-clinical and clinical studies as well as for pilot batches which are not less than 10% of the maximum production scale. The substance’s specification and its control strategy have to be justified on the basis of data from the pre-clinical and clinical phase and, if available, from the production phase.

3.2.S.5: Information on reference materials. If no Chemical Reference Substances (CRS) of the European Pharmacopoeia – counting as completely qualified reference standards – are used, comprehensive information on the analytical and physico-chemical characterization are required even for established primary standards.

3.2.S.6: Information on Container Closure System. Here a brief description is sufficient. However, if a Container-/Closure System is critical for the substance’s quality, its suitability has to be proven and justified. A reference to stability data can be used as supporting information.

3.2.S.7: Information on Stability. A detailed description of the stability studies carried out and the protocol used as well as a summary of the results are expected. Information on stress studies and conclusions on storage conditions and re-test dates or expiry dates are also to be made. This does not apply to substances monographed in the European Pharmacopoeia. If no re-test period or expiry date of batches on the production scale is available at the time of submission of the application, a stability commitment has to be attached with a post-approval stability protocol. The analytical methods have to be described.

The Guideline’s provisions also apply to an Active Substance Master File (ASMF) or to a Certificate of Suitability (CEP). They apply to active substances that have undergone development in a “traditional” way or according to the “enhanced” approach. The provisions of the ICH Guidelines Q8-11 have to be taken into account.

The Guideline is not applicable to active substances of herbal, biological and biotechnological origin as well as to radiolabelled products and radiopharmaceuticals.

The Guideline “Guideline on the chemistry of active substances” (EMA/454576/2016) becomes effective six months after issuing, which means in May 2017.

///////////////EMA, Guideline,  chemistry of active substances

EMA/ FDA Mutual Recognition Agreement on drug facility inspections moving forward

Posted on

Image result for signing animations

Image result for FDA

Image result for EMA

EMA/ FDA Mutual Recognition Agreement moving forward
A possible agreement between the EMA and the US FDA on mutual recognition agreement on drug facility inspections could already be signed in January 2017.

http://www.gmp-compliance.org/enews_05650_EMA–FDA-Mutual-Recognition-Agreement-moving-forward_15642,15660,15656,Z-QAMPP_n.html

A possible agreement between the European Medicines Agency EMA and the US Food and Drug Administration FDA on mutual recognition of drug facility inspections could already be signed in January 2017. This is noted in a report of the EU Commission: “The state-of-play and the organisation of the evaluation of the US and the EU GMP inspectorates were discussed. In light of the progress achieved, the conclusion of a mutual recognition agreement of Good Manufacturing Practices (GMPs) inspections by January 2017 is under consideration.”

But, according to the Commission, some issues are still not resolved – like, for example, the exchange of confidential information and the inclusion of veterinary products in the scope of the text.

The “Report of the 15th Round of Negotations for the Transatlantic Trade and Invesment Partnership” summaries the 15th round of negotiations for the Transatlantic Trade and Investment Partnership (TTIP) from 3rd to 7th October 2016 in New York.

////////EMA, FDA,  Mutual Recognition Agreement, drug facility inspections

EMA reviews Medicines manufactured at U.S. Company

Posted on

Following the issuance of two Non-Compliance Reports for two sites of the US based company, EMA has started a review of medicines manufactured by Pharmaceutics International Inc., USA.

The European Medicines Agency (EMA) has started a review of medicines manufactured by Pharmaceutics International Inc., USA. This follows the issuance of two Non-Compliance Reports for two sites of the US based company after an inspection in February 2016 conducted by the MHRA (the medicines regulatory agency in the United Kingdom) which highlighted several shortcomings in relation to good manufacturing practice (GMP).

Pharmaceutics International Inc. manufactures the centrally authorised medicine Ammonaps (sodium phenylbutyrate) and is also the registered manufacturing site for some other medicines that have been authorised through national procedures in the European Union (EU).

This inspection which was a follow-up to an inspection in June 2015 aimed to assess whether corrective measures agreed previously had been appropriately implemented. It found that shortcomings remained, which included insufficient measures to reduce the risk that traces of one medicine could be transferred to another (cross-contamination), as well as problems with the way data were generated and checked and deficiencies in the systems for ensuring medicines’ quality (quality assurance).

EMA’s Committee for Medicinal Products for Human Use (CHMP) will now review the impact of the inspection findings on the products’ overall benefits and risks and make a recommendation as to whether any changes are needed to their marketing authorisations.

There is no evidence that patients have been put at risk by this issue. However, as a precautionary measure, medicines from this site will no longer be supplied to the EU unless they are considered to be ‘critical’ to public health. Criticality will be assessed by national medicines regulatory agencies for their territories, taking into account alternatives and any impact of shortages on patients. In case where a medicine manufactured at this site is considered not critical in a member state it will no longer be supplied in this member state and any medicine remaining on the market will be recalled.

Source: EMA Press Release

Pharmaceutics International Inc., USA

/////////// EMA,  Medicines,  manufactured, U.S. Company, Pharmaceutics International Inc., USA

EMA publishes Q A on data required for sterilized primary packaging materials used in aseptic manufacturing processes

Posted on Updated on

The European Medicines Agency, EMA, recently published questions and answers on what data is required for sterilisation processes of primary packaging materials subsequently used in an aseptic manufacturing process. Read more about “What data is required for sterilisation processes of primary packaging materials subsequently used in an aseptic manufacturing process?“.

http://www.gmp-compliance.org/enews_05330_EMA-publishes-Q-A-on-data-required-for-sterilized-primary-packaging-materials-used-in-aseptic-manufacturing-processes_15303,15493,15615,Z-PKM_n.html

The European Medicines Agency, EMA, recently published questions and answers on quality of packaging materials (H+V April 2016):

“3. What data is required for sterilisation processes of primary packaging materials subsequently used in an aseptic manufacturing process?
Terminal sterilisation of the primary packaging, used subsequently during aseptic processing of the finished product, is a critical process and the sterility of the primary container is a critical quality attribute to ensure the sterility of the finished product. Both need to be assured for compliance with relevant Pharmacopoeial requirements for the finished product and product approval.

The site where sterilisation of the packaging materials takes place may not have undergone inspection by an EU authority and consequently may not hold an EU GMP certificate in relation to this activity1. When GMP certification is not available, certification that the sterilisation has been conducted and validated in accordance with the following ISO standards would be considered to provide an acceptable level of sterility assurance for the empty primary container:

  • I.S. EN ISO 20857:2013 Sterilization of Health Care Products – dry Heat – Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices (ISO 20857:2010);
  • I.S. EN ISO 11135:2014 Sterilization of Health-care Products – Ethylene Oxide – Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices (ISO 11135:2014);
  • I.S. EN ISO 17665-1:2006 Sterilization of Health Care Products – Moist Heat – Part 1: Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices, and, ISO/TS 17665-2:2009 Sterilization of health care products — Moist heat — Part 2: Guidance on the application of ISO 17665-1;
  • I.S. EN ISO 11137-1:2015 Sterilization of Health Care Products – Radiation – Part 1: Requirements for Development, Validation and Routine Control of a Sterilization Process for Medical Devices (ISO 11137-1:2006, Including 1:2013);
  • I.S. EN ISO 11137-2:2015 Sterilization of Health Care Products – Radiation – Part 2: Establishing the Sterilization Dose (ISO 11137-2:2013);
  • I.S. EN ISO 11137-3:2006 Sterilization of Health Care Products – Radiation – Part 3: Guidance on Dosimetric Aspects.

It is the responsibility of the user of the manufacturer of the medicinal product, to ensure the quality, including sterility assurance, of packaging materials. The site where QP certification of the finished product takes place, and other manufacturing sites which are responsible for outsourcing this sterilisation activity, should have access to the necessary information to demonstrate the ongoing qualification status of suppliers of this sterilisation service. This should be checked during inspections. The Competent Authorities may also decide, based on risk, to carry out their own inspections at the sites where such sterilisation activities take place.

Dossier requirements:

The following details regarding the sterilisation of the packaging components should be included in the dossier:

1. The sterilisation method and sterilisation cycle;
2. Validation of the sterilisation cycle if the sterilisation cycle does not use the reference conditions stated in the Ph. Eur.;
3. The name and address of the site of sterilisation and, where available details of GMP certification of the site. Where the component is a CE-marked Class Is sterile device (e.g. sterile syringe), confirmation from the manufacturer that the component is a Class Is sterile device, together with a copy of the declaration of conformity from the Notified Body will suffice.

In the absence of GMP certification or confirmation that the component is a CE-marked Class Is medical device, certification that the sterilisation process has been conducted and validated in accordance with the relevant ISO standards should be provided.
________________________________________
1Sites located in the EU which perform sterilisation of primary packaging components only are not required to hold a Manufacturer’s/Importer’s Authorisation (MIA). Sites located in the EU, which carry out sterilisation of medicinal products, are required to hold a MIA in relation to these activities.”

Source: European Medicines Agency – Quality of medicines Q&A: Part 2 – Packaging.

///////////EMA,  Q&A, data, sterilized primary packaging materials,  aseptic manufacturing processes

EMA’s new Draft Guideline on the Sterilisation of Medicinal Products, APIs, Excipients and Primary Containers

Posted on

For medicinal products administrated in sterile form, the process to reduce the microbial level is a critical manufacturing step with regard to quality. The EMA has recently published the draft of a guideline on that topic which contains a range of clarifications. Read more about the coming requirements on sterilisation of medicinal products, APIs, excipients and final containers

see

http://www.gmp-compliance.org/enews_05350_EMA-s-new-Draft-Guideline-on-the-Sterilisation-of-Medicinal-Products–APIs–Excipients-and-Primary-Containers_15435,S-WKS_n.html

As referred to in the European Pharmacopoeia, the procedure for terminal sterilisation of a medicinal product, an API, or an excipient is generally the method of choice. Yet, this might be difficult in many cases for product stability reasons. That’s why other microbial reduction processes can be used like sterilising filtration or aseptic processing. So far, there has been some uncertainty about these methods and their acceptance in a marketing authorisation procedure or a variation application, and about which data have to be submitted.

EMA’s new draft guideline entitled “Guideline on the sterilisation of the medicinal product, active substance, excipient and primary container”  from April 2016 contains clear provisions with regard to the acceptance of alternative sterilisation processes by the European authorisation authorities. Those provisions apply to chemical and biological medicinal products for human and veterinary use as well as the respective APIs and excipients, but aren’t applicable for immunological veterinary medicinal products.

The document describes the requirements on sterilisation of medicinal products, APIs, excipients and primary containers, as well as on the choice of the method of sterilisation. Besides, the document contains two decision trees for the selection of the sterilisation method for products in diverse galenic forms.

Please find hereafter a summary of most important aspects in this chapter:

Manufacturing of sterile medicinal products
The conditions and physical parameters for the following processes are described in detail:

  • Steam sterilisation
  • Dry heat sterilisation
  • Ionisation radiation sterilisation (here reference is made to the Note for Guidance “The use of Radiation in the Manufacture for Medicinal Products“, ISO 11137 and Ph. Eur. Chapter 5.1.1)
  • Gas sterilisation (with ethylene oxide,  ethylene chlorhydrin, etc.)
  • Sterile filtration
  • Aseptic processing

Basically, the following rules apply to all processes:

  • The choice of the sterilisation method has to be justified.
  • The method must be validated.
  • The method described in the corresponding general monograph of the European Pharmacopoeia has to be used. All deviations have to be justified.
  • The procedures for all sites (including outsourced activities) where sterilisation is performed have to be documented (CTD module 3, chapters 3.2.P.2 and 3.2.P.3).

Manufacturing of sterile APIs and excipients
The document clarifies that the requirements laid down in Part II of the EU GMP Guide are only applicable for the manufacture beginning with the starting material up to the finished API, immediately prior to sterilisation. The sterilisation step performed on the API is considered to be a step in the manufacture of the medicinal product. As a consequence, each manufacturing establishment which performs sterilisation of an API requires a manufacturing authorisation, a GMP certificate and thus aQualified Person too. This also applies to establishments which manufacture sterile excipients. APIs and excipients with a Certificate of Suitability (CEP) are also covered by this regulation.

Selection of the sterilisation method
The following principles apply:

  • According to Ph. Eur., general chapter 5.1.1, the terminal sterilisation step should be made in the final container whenever possible.
  • When sterilisation by heat is not possible because of temperature sensitivity of the product, alternative methods or aseptic processing may be used if they are properly validated. Terminal steps for the reduction of the microbial level are also possible as long as they are not used to compensate for poor aseptic manufacturing practice.
  • A change (shortening) in shelf-life or storage conditions caused by the terminal sterilisation step is not in itself a reason to allow aseptic processing unless the new storage conditions or shelf-life would cause problems or restrictions in the use of the product.
  • An increase in impurity levels or degradation products upon terminal sterilisation doesn’t directly lead to the acceptation of aseptic processing. The risks induced by an increased level of impurities should be balanced with the risks induced with an aseptic manufacturing method (e.g. characteristics of the degradation products vs. posology of the medicinal product). Attempts performed to determine sterilisation conditions to give acceptable impurity levels and to simultaneously achieve a microbial reduction of at least 10-6 have to be described in the quality dossier.
  • Under specific conditions, aseptic processing may be accepted even if terminal sterilisation of the product itself would be possible, e.g. in the case of eye drops in polyethylene containers enabling administration of single drops or pre-filled pens. Here, terminal sterilisation of the product would destroy the final container.
  • The considerations for the choice of the container should be described in the dossier also in the case of heat-sensitive final containers. Here, the search for materials which come through terminal sterilisation has priority. For example, polypropylene is more resistant than polyethylene. The choice for the final container has to be justified.
  • Large volume parenterals should be terminally sterilised whenever possible.

In general, the regulatory authorities will expect a detailed justification for the selection of the sterilisation method or the aseptic processing in the form of a benefit/risk analysis.

The essence of the requirements described in the chapters of this guideline can be found in the two decision trees for sterilisation of products in diverse administration forms (aqueous liquid; non-aqueous liquid, semi-solid, dry powder).

The deadline for comments on this Draft Guideline Sterilisation of the medicinal product, active substance, excipient and primary container ends on October, 13th 2016.

///////////////EMA,  new Draft Guideline, Sterilisation of Medicinal Products, APIs, Excipients and Primary Containers